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ABSTRACT OF THE DISSERTATION

Interactions of Relativistic Electrons with Relativistic Plasma Waves
by

Ronald Leslie Williams
Doctor of Philosophy in Physics
University of California, Los Angeles, 1992
Professor John M. Dawson, Co-Chair

Professor Chan Joshi, Co-Chair

The interactions of relativistic electrons with relativistic p}asxﬁa waves are stud-
ied by examining three novel applications: a high gradient particle accelerator, an
electron beam diagnostic of relativistic plasma waves, and an undulator for pro-
ducing coherent short wavelength radiation. The focusing of a high energy particle
beam in a ramped density plasma lens for use in future high energy ete~ colliders
is also examined.

'The trapping threshold, energy gain, phase evolution, beam focusing and energy
spectrum are found for particles accelerated in the laser plasma beatwave accelera-
tor, plasma wakefield accelerator, and laser wakefield accelerator schemes in which
accelerating gradients on the order of 10’s to 100’s of giga-Volts per meter may
exist. The limits due to beam emittance and plamsa wave width are found for the
measurement of relativistic plasma wave amplitude and wavelength using a rela-
tivistic electron beam as a diagnostic. The short wavelength (&~ 1um) coherent

spontaneous radiation, particle bunching, stimulated radiation, and radiation gain

Xiv



are found for modest energy electrons (=~ 4 MeV} injected into a 1 cm long, 100 um
period plasma wave undulator which is shown to behave similar to a free electron
laser undulator. The compression of high energy beams to very small spot sizes
and the reduction in chromatic aberrations in the ramped density plasma lens are
found to be sensitive to beam and lens matching which is determined by adjusting

the Courant-Snyder accelerator parameters.
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Chapter 1
Introduction

Particles can be accelerated over a much shorter distance to high energies in
a compact high-gradient plasma wave accelerator than in a vacuum acceleration
structure. A particle beam can emit much higher frequency radiation in a compact
short period plasma wave undulator than in a vacuum magnetic undulator device. A
high energy particle beam can be compressed to a much smaller spot size in a density
ramped plasma lens than in a traditional magnetic lens immersed in vacuum. These
separate novel concepts of injecting particles into a medium to accelerate them, to
make them radiate and to focus them are based on the large amplitude electrostatic
fields that can exist in a plasma medium.

The direction of these electrostatic fields can be aligned in a dense plasma by
injecting intense electromagnetic (EM) radiation (laser) beams or intense short rel-
ativistic particle beams (electron bunches), which results in the excitation of rela-
tivistic plasma waves (RPWs). The successful application of RPWs in particle évc-
celeration and radiatién generation experiments requires a thorough understanding
of the interactions between the particles and waves, which has been the motivation
for the work of this dissertation. The plasma lens, although not necessarily based

on RPWs, also utilizes the large amplitude fields found in plasmas, and the methods



for studying RPW'’s can be applied to plasma lenses.

The amplitude of the plasma electrostatic field can be estimated using Gauss’
law which gives E = mocwp/e = \/n, Volts/cm, where m, is the rest mass of the
plasma electrons, ¢ is the speed of light, the plasma frequency is Wp = m,
and n, is the background plasma density in em™2, Plasma densities on the order
of 10'7 to 10'® cm™* are typical for the accelerator, undulator and lens applications
considered herein., The plasma wave is relativistic because it has a phase velocity
approximately equal to the speed of light. The phase velocity of the plasma wave is
equal to the group velocity of the EM radiation or particle bunch that excites the
wave. In this work, the transients associated with plasma wave growth are assumed
to be absent so that the plasma wave amplitude is constant during the time the
particles transit through it.

The particles that are injected into either the plasma accelerator, undulator or
lens also move at approximately the speed of light and do not have collisions with
the background plasma particles. The injected particles are assumed not to interact
with each other because they constitute a tenuous beam. The density of the elec-
trons in the bunch is assumed to be less that the density of the background plasma
in the plasma accelerator and plasma undulator. The density of the electron bunch
is greater than the background plasma density in the plasma lens considered herein,
and this is called the underdense plasma lens case. The length of thé plasma wave
accelerator or undulator considered herein is on the order of one to ten millimeters,
so that the time during which the electron is accelerated or radiation is prodﬁced
is on the order of 3 to 30 picoseconds.

In the plasma wave accelerator, relativistic electrons are injected into, become
trapped by and travel in synchronism with the wave while gaining energy from the

wave’s electrostatic potential at the rate of 10’s to 100’s of gigaelectronVolts /meter.



The limits for electron trapping and energy gain are presented herein. The plasma
wave has a finite width and the effects of the resulting radial fields which provide
focusing and defocusing are included. In the numerical simulations, a short beam
(bunch) of electrons, with emittance, is injected into the plasma wave at various
phases and radial positions in an attempt to approximate experimental conditions
and to obtain an energy spectrum of the accelerated electrons. The results are
general and apply to most plasma wave acceleration experiments underway around
the world, however the parameters of several experiments, in particular the UCLA
heatwave experiments, are used as examples.

RPWs have very short wavelengths and high equivalent magnetic fields, typi-
cally on the order of 100 um and one megaGauss, which make them attractive for
use as electron undulators. The electrons are injected perpendicular to the plasma
wave and its longitudinal electrostatic fields oscillate the electrons back and forth
which causes them to radiate electromagnetic waves. The plasma wave used for the
undulator is basically the same as the plasma wave used for the accelerator except
that it is wider in order that more undulations occur. The resonance condition for
free electron lasers also holds for the plasma wave undulator. The wiggle wave-
length is equivalent to the plasma wave wavelength so that A = Ay /272 = Ay /270,
where A, A, and ), are the wavelengths of the radiation, wiggler (or undulator)
and plasma wave, respectively, and v is the relativistic factor of the electron. An
advantage of the short wavelength plasma wave undulator is that it would allow
a modest energy electron beam, for example tens of MeV, to generate coherent
radiation having wavelengths on the order of a few nanometers using a compact
apparatus. Normally, very high energy electron beams (GeV range) at large accel-
erator centers are needed to obtain radiation wavelengths in the nanometer range

using longer period magnet undulators.



In order to get coherent radiation from the undulator, the electrons in the bunch
need to radiate coherently. The motion of the electron bunch as it passes trans-
versely through the plasma wave is studied in detail in order to see if the electrons
get scattered out of the beam by the electrostatic fields. It is found that the lon-
gitudinal electrostatic field has a significant spreading effect on the electron bunch
but does not disrupt the beam’s coherence necessarily. This spreading effect ap-
pears after the electron bunch has exited the plasma wave and could be used as a
diagnostic of the amplitude and wavelength of the longitudinal plasma wave fields.
Limits on the use of the electron bunch as a diagnostic due to beam emittance and
plasma wave width are presented. A spatial grating in the electron distribution
occurs as the injected electron energy is increased.

The radiation from the electrostatic plasma wave undulator is derived starting
from the calculation of the electron trajectories using perturbation techniques. The
results can be extended to the ac FEL by letting the value of the plasma wave
wavevector go to zero. The spontaneous radiation, as a function of angle and fre-
quency, from electrons drifting through the plasma wave is calculated. Then an
electromagnetic wave is added which results in electron bunching, stimulated radi-
ation and gain. Approximate analytical results are compared to three dimensional
simulations.

In high energy ete” colliders the beams can be injected into plasma lenses
which focus the particles to very small spot sizes (submicron dimensions) at the
interaction point. Very small spot sizes will be required in future colliders in order
to increase the beam luminosity (intensity) and thus the collision rate. The large
focusing force in the plasma lens is due to the large ion space-charge electrostatic
fields which are exposed when the electron beam expels background electrons from

its path. Background electrons are attracted into the positron beam’s path, which



also results in large focusing fields. The rapid particle focusing in plasma lenses can
result in synchrotron radiation emission, energy loss, and thus chromatic aberrations
which can put a limit on the minimum spot size attainable. Density ramped plasma
lenses in which the beam is gradually squeezed to a small spot size in order to reduce
the radiation and aberration problems are examined herein. The rate of spot size
compression versus rate of plasma density increase, lens nonuniformity, and beam
energy spread is discussed.

In Chapter 2 the plasma wave based particle accelerator is discussed in detail,
In Chapter 3 the use of electron bunch spreading as a diagnostic of the plasma wave
fields is discussed. In Chapter 4 the radiation from electrons passing through the
plasma undulator is discussed. In Chapter 5 the spot size compression of a high
energy electron beam passing through a density ramped plasma lens is discussed.
In Chapter 6 are the conclusions. Appendix A contains tables of data pertinent to
laser plasma beatwave acceleration experiments. In Appendix B are comments on
simulations of accelerated electron energy spectra for three types of plasma sources
used in the UCLA laser plasma beatwave acceleration experiment. In Appendix
C is a description of a sensitive electron energy data acquisition system used in
the UCLA laser beatwave acceleration experiments. In Appendix D are comments
on the Osaka University plasma beatwave acceleration experiment. In Appendix
I is discussed modified simulation results of the UCLA the beatwave acceleration
experiment which occurs when the plasma wave has a spatial profile (inhomogene-
ity) in the longitudinal direction is included in the simulations. In Appendix F is
discussed a modification to the plasma undulator results which oecur when plasma

wave nonlinearities (harmonics) are included in the simulations.



Chapter 2

Studies of Relativistic Wave-Particle
Interactions in Plasma-Based Collective

Accelerators

2.1 Introduction

Recently, relativistic plasma waves excited by either a laser beam or an electron
bunch, have been under intense study because of their potential in accelerating
particles at a very rapid rate [1]. Such plasma waves with phase velocities almost
equal to that of light form the basis of at least three collective accelerator schemes,
each distinguished by the method used for the excitation of such waves. In the
plasma beat wave accelerator (PWBA), two parallel laser bearns are co-propagated
into an underdense plasma [2] [3]. The difference frequency of the lasers is chosen to
match the plasma frequency, so that the pondermotive force of the beating pattern
resonantly builds up a relativistic plasma wave. Alternatively, intense plasma waves
can be excited by using a relativistic electron bunch, since the energy density in

existing electron bunches can be comparable to, or exceed that of the most powerful



of today’s laser beams. In the plasma wake field accelerator (PWFA), a dense
compact electron bunch is sent through a high density plasma [4]. The space charge
force of such a bunch displaces the plasma electrons and leaves behind a wake of
plasma oscillations. The phase velocity of this wake is the same as that of the
driving bunch, approximately c¢. Instead of using an electron bunch, one could use
an extremely short but intense laser pulse as in the laser wake field accelerator
(LWFA), to excite the plasma wave which will have a phase velocity equal to the
group velocity of the intense laser pulse [2] [5] [6].

'The maximum accelerating fields of such plasma waves scale as Vo Volts/cm
where ng is the plasma density in em™3. In all three acceleration schemes, PBWA,
PWFA and LWFA, the acceleration mechanism is the same. A trailing relativistic
electron bunch, appropriately phased in the potential well of the plasma wave, can
remain in synchronism with it for a long time and be accelerated. Experiments
are being carried out at UCLA [7] [8], Rutherford Appleton Laboratory (RAL,
United Kingdom [9]), Institute of Laser Engineering (ILE, Japan [10]), Ecole Poly-
technique (EC, France {11]), INRS (Canada [12]), and Atomic Energy of Canada
Limited (AECL, Canada {13]) on the reproducible excitation of such plasma waves
using the beat wave technique and on the controlled acceleration of injected parti-
cles. Experiments at Argonne National Laboratory [14] have clearly demonstrated
the excitation of the plasma wake fields using an electron bunch while a similar ex-
periment is underway at KEK (Japan {15]). An experiment on the LWFA is being
planned at the Lawrence Livermore National Laboratory (LLNL [16]).

The work of this chapter is motivated by a flurry of experimental activity in
the area of plasma based collective accelerators, We present one-, two- and three-
dimensional studies of relativistic wave particle dynamics to illustrate both the

details of the acceleration mechanism, and to estimate the energy spectra of ac-



celerated electrons. Whenever possible, we take UCLA and RAL experiments as
examples. We note that one dimensional simulations of single frequency and beat
wave heating have previously been carried out using a Vlasov code [17] and also
one and two dimensional simulations of beat heating have been carried out using
a particle in cell code [18]. This work differs from previous works in that here we

concentrate on dynamics of externally injected rather than self-trapped particles.

2.2 One Dimensional Model of Particle Acceler-
ation by Plasma Waves

The main features of the acceleration process can be illustrated using a simple
one-dimensional (1-D) sinusoidal plasma wave model and by solving for the electron
motion in the rest frame of the wave. We define zero phase at the potential minimum
of the wave in the wave frame. For reference, figure 2.1 is an idealization of a particle
in the potential of the wave as seen in the wave frame, and also defines the location
of zero phase. An electron that moves or slips in the negative phase direction (i.e.,
has a negative wave frame velocity as shown by the arrow in figure 2.1 has a lab
frame velocity that is less than the wave’s phase velocity and the opposite is true
for electrons moving in the positive phase direction.

We treat the plasma wave as being linear (no significant harmonic components)
and unaffected by the injected particles. This is appropriate in the limit of small
wave amplitudes and small number of injected electrons such that beam loading
effects can be neglected [19]. These assumptions are valid for all the current ex-
periments. Consider for instance the UCLA beat wave acceleration experiment.
The fractional plasma wave amplitude is ¢ < 0.10, so we can assume a sinusoidal

wave, (The fractional plasma wave amplitude, or fractional density modulation, is



-180 -90 0 90 180  degrees

Figure 2.1: Idealization of 1-D plasma wave potential and electron in the wave
frame. Fractional plasma wave amplitude is € = n, /no.

€ = n1/ng, where n, is the density fluctuation of the wave and ng is the background
plasma density, as shown in figure 2.1.) Also, the number of injected electrons
is less than 10® which is much smaller than the 1-D beam loading limit given by
N = 5 x 10°,/igA =~ 10° where A is the plasma wave cross sectional area (cm?)
and € = 5%.

We first examine limits on the energy of electrons trapped in a plasma wave
potential and then solve the 1-D relativistic equation of motion to obtain the vari-
ation of electron energy between the limits. These results are general, however we
take particular examples of the PBWA experiments at UCLA which use a CO; laser
which can lase on several different wavelength combinations and at RAL which use

a Nd:glass laser. The plasma wave has a relativistic Lorentz factor, v¥p, which is



related to its phase velocity, vy, by

22 7 w2
. P p _ .| P __
T T2 and c 1—:;_2—.63’ (2.3)

and w, is the plasma frequency and w is the laser frequency. In one of the UCLA
experiments, the 9.6 um and 10.27 um lines of a CO; laser are used to excite a
plasma wave which has v, equal to l13.7 , whereas in the RAL experiment, the 1.05
pm and 1.06 pm lines of Nd:YLF and Nd:YAG oscillators are used to excite a
wave having 7, equal to 94.5. Table A.1 of Appendix A is a list of lasers currently
used in beatwave acceleration experiments. Table A.2 is a comparison of beatwave
accelerator properties. Appendices B and E contain comments on another UCLA
beatwave experiment in which -y, equals 9.7. Appendix D contains comments on
the Osaka University experiment in which 7, equals 9.7 also.

The energy of the injected electron is -, in the lab frame and is 7 = Yp¥oll —
8,8,) in the wave frame where f, and 3, are the lab frame velocities of the wave
and electron normalized to ¢, respectively. (Primed quantities are wave frame quan-
tities.) The wave frame “trapping condition” is that the electron’s kinetic energy
must be less than the potential energy of the wave or (v — 1)moc® < ed, where m,
is the electron rest mass, € is the electron charge and ¢/ is the potential of the wave
in the wave frame [20]. The lab frame trapping condition is obtained by writing ¢/
in terms of lab frame quantities and using the invariance of the plasma wave’s longi-
tudinal field, £ = E, the transformation of the longitudinal wave vector, k = %,
and the transformation of the energy from the wave frame back to the lab frame,

v = YY' (1 + B,0). We then obtain the minimum and maximum lab frame energies



for an electron trapped in the plasma wave:

— 2 _ 1
e =T {1 B Fe*rpﬁﬁ)?} >

1

where I' = (1 + cos f,) and 6, is the phase at which the electron is injected into the
plasma wave. Figure 2.2(a) is & plot of Ymin and Ymes versus fractional plasma wave
amplitude for different values of =y, corresponding to the experiments considered.
In plotting these curves we have assumed that the electron is injected at 6, = 0 or
the potential minimum of the wave for electrons. In a plasma wave of amplitude e,
a trapped electron will have an energy between the upper (Vi) and lower (Ymin)
curves. The monotonically decreasing curves, Ymin, are the minimum thresholds for
trapping of electrons by a plasma wave of a certain amplitude, ¢. Electrons having
energies less than ., will slip backward out of the wave’s potential well and are
not trapped. For fractional plasma wave amplitudes greater than about e = 10%,
the trapping thresholds do not vary much for plasma waves having 4,’s that differ
by almost an order of magnitude. The increasing curves, Ymae, are the maximum
energies an electron can have in a plasma wave of a given amplitude. Electrons
having energies greater than ., will slip forward out of the potential well and are
not trapped. Approximations to equations 2.2 and 2.3 for € > 0.01, 8 = 1, and

¢ < 180 degrees are

Ty
min & oo 2.4
L 2(1+Tey,) 24
N |21+ Tey,) - (2.5)
Yrax Y €p 2(1 + FE’YP) : ‘

For ¢ > 4%, the second term in 7,4, can be ignored.
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Figure 2.2(b) is a plot of Yinin and Yo versus e for three sample values of 8, and
illustrates the variation in energy for an electron injected and extracted at different
phases in the potential well moving with a Y = 13.7. As expected, the family of
curves for Y, (the lower curves) shows that an electron injected at the wave’s
potential minimum (§ = 0) has the lowest trapping threshold energy compared to
an electron injected at any other phase in the potential well. This is because the
wave potential available for trapping must be greater than the electron’s kinetic
energy in the wave frame. If the electron is injected at positions that are higher in
the well where the potential available for trapping is less, the electron’s wave frame
kinetic energy must be less for it to be trapped. This reduction in wave frame
kinetic energy transforms to an increase in lab frame kinetic energy for trapping to
occur. This assumes that the electrons are injected with , less than the plasma
wave’s vy.

The family of curves for v, (the upper curves in figure 2.2(b)) shows that an
electron extracted at the wave’s potential minimum (6 = 0) reaches a higher energy
than an electron extracted at any other phase in the potential well. For cases in
which the electron stops being accelerated before reaching the potential minimum
(or after slipping beyond the minimum), the final energy actually attained depends
on the amount of net potential through which it has fallen in the wave frame.

The maximum energy gained by an electron having an arbitrary injection energy
in a given plasma wave is not the maximum possible energy attained by an electron
in that plasma wave. The maximum possible energy is gained only by the electron
that is injected having the minimum trapping threshold energy. This is because the
electron at the minimum threshold energy slips backward in the waveframe all the
way to the peak of the potential and can then gain kinetic energy corresponding

to the height of the potential well. Other electrons are turned around sooner and
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therefore do not slide down the full potential well. In order to find the maximum
energy attained by an electron having an arbitrary initial lab frame energy, we
transform the arbitrary lab energy to the wave frame, add the maximum energy the

electron gains from the wave, and transform this back to the lab frame. We obtain

7= e (= By6) + ey ] {1 i ﬂ”\J L e s 6;:50) + Lev,p 37)? }

(2.6)
which depends on the electron injection energy, o, and is plotted versus € in fig-
ure 2.3(a), along with a plot of Y., for injection at 6, = 0. The maximum energy
the electron gains from the wave, as used in the above, was found by injecting the
electron at 6, = 0 and calculating its final energy after being trapped and upon
returning to € = 0. As the energy of the injected electron increases, the maximum
energy attained decreases for trapped electrons, and the amplitude of the plasma
wave required to trap that electron decreases.

We can approximate equation 2.6, in the limits e > 1%, 82 1 and 6 < 180 deg,

for trapped electrons by

Yo . Tp 1
v R, ——+—+2(1w§wcos{9)efy) - (2.7)
P [(’yp Yo ? (‘-;-; + ;;‘ﬂ + 2(1 + cos ﬁ)eyp)
and for untrapped electrons by
Tp
y R . (2.8}
(%;’; + 22 — 2(1 + cos 9)67,,)

With the approximations 7, > 1 and 6, = 0, we obtain the usual expression
Y R Yo + 4] for energy gained by the trapped electrons.

The Jower branches of the family of curves in figure 2.3(a) show that electrons
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can gain small amounts of energy although they are not trapped. This is because
they are slowed down a little by the potential in the wave frame before slipping
backwards out of the potential well. This decrease in backward velocity in the wave
frame transforms to energy gain in the laboratory frame. The maximum energy that
an untrapped, and below injection threshold, electron can ever attain corresponds
to v,. That is, if the electron just reaches the rim of the potential well and comes
to rest there with zero kinetic energy, then its energy in the laboratory frame is
Yp- However, if the electron is attracted back into the well, then it is trapped and
the energy gain jumps to a maximum value given by Y., and this is the jump in
energy shown in figure 2.3(a).

Figure 2.3(b) shows the maximum electron energy attainable versus € for elec-
trons having the same injection energy, but injected at three different phases in a
plasma wave having v, = 13.7. This figure shows that the magnitude of the plasma
wave required for trapping and the maximum energy a trapped electron can attain
both increase as the injection phase increases away from 6, = 0. Also, the maximum
energy attainable by an electron increases with fractional plasma wave amplitude
when the electron is injected at a position that is above the potential minimurm,
i.e. for cases in which 6, # 0 the energy curves have positive slopes as shown by
the 45 and 90 degree examples. The reason for this is that the maximum possible
kinetic energy is attained when the electron reaches the potential minimum while
moving forward in the wave. Therefore in this case an electron injected at the po-
tential minimum must return to its initial position at the potential minimum for
all amplitudes of trappable plasma waves. But an electron injected at a position
above the potential minimum must return to its initial position plus slip through an
additional potential to reach the potential minimum and thus attain its maximum

possible energy. This amount of additional potential through which the electron
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must fall to reach the potential minimum varies with the amplitude of the plasma
wave, and accounts for the increase in maximum electron energy with increasing
fractional plasma wave amplitude for electrons injected above 6, = 0. For similar
reasons, the slope of the energy curve increases as the injection phase increases away
from 6, = 0.

In order to find the electron energy actually attained for the case in which the
electron is accelerated for an arbitrary time and may be injected and extracted at

arbitrary phases, we solve the single electron relativistic equation of motion.

dP  dymyv - .
P T el sin (kyz — wpt + 6,) (2.9)
where
1
y= _ (2.10)
-5

P = electron’s momentum

v = electron’s velocity

2,1 = wave propagation direction, time
ky, = plasma wave number

8, = initial phase.

The equation of motion can be rewritten in terms of coupled equations for the

lab frame energy, v, and wave frame phase, £, as follows and solved numerically

dy eE [ 1 |
= moc”l ~ sin(¢ + 6} (2.11)

CNHS
| F(\g\ % — chy 1 - -&1_2_ —w, (2.12)
4 (%) =k o
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The solutions to equations 2.11 and 2.12 are shown in figure 2.4, which is a
plot of ~ versus € for two trapped and two untrapped electrons that are injected
at 0, = 0 into a plasma wave having v, = 13.7. In order to examine the general
case, the values selected for the electron’s -y, are greater than and less than -, and
are arbitrary except that «, = 4 is the energy of electrons injected in the UCLA
experiments [7}[8]. In order to exhibit the evolution of the orbits in time, the thick
lined portions of the curves represent the progression of the electrons up to the time
they are extracted, which is 75 plasma wave périods (2m /w, and which corresponds
to a 1 cm (462 c/wy) acceleration length for this case. The thin lined portions of
the orbits represent the continuation of the orbits for a time of 365 plasma wave
periods, which is approximately the time for the +, = 4 electron to complete one
closed orbit. This line convention is followed also in figures 2.5(a) and 2.5(b). The
outer closed orbit is that of a trapped electron having initial energy =y, less than ,,
and the inner closed orbit is that of an electron having -, greater than «y,. The orbit
for the electron having <y, equal to 7, is a point in the center of the closed orbits,
i.e., that electron neither gains nor loses energy when it is injected at 6, = 0. The
upper and lower passing orbits are for untrapped electrons having =y, greater than
Ymae and less than v, , respectively.

On the outer closed orbit in figure 2.4, the electron starts at 6, = 0 at the
potential minimum upon injection. Then it slips swiftly backwards in phase (toward
negative phase} gaining only a small amount of energy until it is reflected at the
turning point and is trapped. This turning point occurs after about 3 to 4 mm (139
to 185 ¢/w,) of acceleration distance in the lab frame for this example. The electron

then slips forward in phase slowly and continues to gain energy until it reaches a
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Figure 2.4: Variation of lab frame energy with wave frame phase for two trapped
electrons (7o = 4 and 25) and two untrapped electrons (7, = 3 and 75).

maximum energy at the extraction phase (thick line). For a longer acceleration
distance (thin line} an electron would continue gaining energy until it reached the
maximum, corresponding to being at the potential minimum and having a positive
velocity in the wave frame. As the electron climbs up the other side of the well, it
has positive phase relative to the wave’s minimum and experiences a decelerating
fieid, loses energy, and reverses its direction at the turning point. It loses more
energy as it returns to its initial # = 0 injection point where its lab frame kinetic
energy is a minimum, corresponding to being at thé potential minimum and having
a negative velocity in the wave frame. The explanation of the inner closed orbit is
similar to the above, except that the electron initially slips forward in phase while
losing energy.

Figure 2.5(a) is a plot of the electron’s lab frame energy (7y) versus acceleration

distance for the two trapped and two untrapped electrons which differ according
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to vo. Figure 2.5(a) is figure 2.4 plotted versus z instead of £, using equation 2.13.
The figure shows that as an electron’s v, approaches the wave’s v¥p, the maximum
energy gained decreases and the time to reach maximum energy decreases. Also
shown is that the electron gains approximately 25 MeV in about 2.5 cm, or a gain
of 1 GeV per meter.

Figure 2.5(b) is a plot, of wave frame phase, &, versus acceleration distance, z, for
the same four electrons, and shows that the deeply trapped electron, =y, = 4 in this
case, spends most of the time moving forward between turning points. Comparison
of figures 2.5(a) and 2.5(b) shows that energy gain occurs only when the trapped
electrons are in the wave’s negative phase region.

The transition of the electron trajectories in phase space from being untrapped
to trapped as the injection energy increases is shown in figure 2.6, in which the
injection energy is varied in small increments. Clearly, the v, = 3.0 electron is
untrapped as seen from its passing or sinusoidal orbit whereas the ~, = 3.2 electron
is just trapped, and the phase space separatrix occurs between the two. This is in
agreement with the energy gain vs fractional plasma wave amplitude curve shown
in figure 2.3(a) for the case of € = 5%.

Figure 2.7 is a comparison of phase space trajectories for a single electron (v, = 4
and 0, = 0) when it is not trapped by a small plasma wave having € = 3% and when
it is trapped by larger plasma waves having ¢ = 5% and 10%. This shows that the
two larger plasma waves will accelerate the electron to the same maximum energy,
and that as the plasma wave amplitude increases, the phase excursion decreases
as expected. However, the 10% wave will accelerate the electron to the maximum
energy in about half the acceleration distance as the 5% wave since the r.m.s.
accelerating field for the 10% wave is that much higher than the 5% wave.

Figure 2.8 is a comparison of phase space trajectories for a single electron that
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is injected at different phases in the plasma wave, § = 0, 30, 60 and 90 degrees.
The trajectory of the electron injected at 6 = 0 is plotted for one complete orbit
which is about 365 plasma wave periods. The other trajectories are plotted for the
same length of time, however they do not make complete orbits as indicated. The
90 degree orbit is untrapped, and the 60 degree orbit attains the highest energy of
the three.

Figure 2.9 is a comparison of lab frame energy, «, vs lab frame distance, z,
for an electron trapped by two plasma waves having different ~,’s. The ~,’s of
the plasma waves used are 33.0 and 94.5 for the laser wavelength combinations
10.3 & 10.6, and 1.05 & 1.06 um, respectively. Much larger maximum energies
and longer acceleration lengths are obtained for the larger +,’s, as expected since

the trapped electrons stay in synchronism with the wave for a longer time. The

injected electron’s initial energy is chosen to be «, = 5.5, which is trapped by both
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the v, = 33 and 94.5 plasma waves. (The 7, = 4 electron is not used in this example
because it would not be trapped by the v, = 94.5 plasma wave if injected at 6, = 0).
The maximum energy and the acceleration length obtained by numerical calculation
(figure 2.9) is in agreement with the theoretical values listed in Table A.2.

In the PBWA experiments|7]{8], no attempt is made to control the individual
electron’s injection and extraction phases since the plasma wave’s accelerating buck-
ets are typically submillimeter in length and are overlapped by many electrons in
the approximately 1 ¢m long bunch. We therefore examine the case in which elec-
trons are uniformly injected at all phases in order to obtain an accelerated electron
energy spectrum. We recalculated the «, = 4 trajectory shown in figure 2.4 and
plotted only the end point, {+,£). Then the initial phase was shifted by a small
increment, and the trajectory was recalculated and again only the end point was

plotted. Figure 2.10(a} is the resulting plot of the electron final energies versus ini-

24



tial injection phase for an acceleration time of 75 plasma wave periods. The figure
shows that significant energy gain occurs only for those electrons injected within
about 80 deg of either side of # = 0. Recall however that all electrons gain energy
only in the wave’s negative phase region. The other electrons are untrapped, but
may gain small amounts of energy. The figure also shows that the peak energy gain
occurs for electrons injected having a small negative initial phase (about —25 deg to
—35deg). The shape of this curve and the phase corresponding to the peak energy
vary as the acceleration length changes.

Figure 2.10(b) is a plot of the distribution of final phases versus initial phase and
is expanded to show the peak of the trapping region. Also shown is a dotted line,
having slope = +1, which represents the initial phase distribution. We see that all
the trapped electrons have bunched into phases that are more negative than about
-90 degrees. This bunching leads to a strong modulation of the initially uniform
electron beam at w,/2m (typically greater than terahertz frequencies} producing
electron microbunches that are subpicosecond in duration. Also, we find that, for
electrons injected at phase points that are symmetric about 6, = 0, the negative
phase trajectory reaches a more positive final phase than the positive phase trajec-
tory, for this case in which the simulation was run for a time of 75 plasma wave
periods. The untrapped electrons may reach very large negative (positive) phases
because they continue to slip backward (forward).in and out of many successive

plasma waves.
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2.3 Influence of Radial Fields on Focusing and
Defocusing of Injected Particles: Two Di-
mensional Model

In the plasma beat wave sccelerator, the pump laser beams have transverse
intensity variations and finite spot sizes which are comparable in magnitude to the
wavelength of the relativistic waves that they excite. Similarly, in the plasina wake
field accelerator the “drive” electron bunch is typically ¢/w, wide. In both cases
the plasma waves that are excited have strong transverse electric fields as well as
strong accelerating, longitudinal electric fields. These fields are 90 deg out of phase
with one another [22] and both have the same spatial periodicity. These radial
fields exert strong focusing and defocusing forces on off-axis particles [23]. At first
glance therefore we might expect only those particles that spend most of their time
in both the accelerating and focusing phases of the wave to survive. In this section
we extend our 1-D analysis to two dimensions (2-D) to investigate the combined
effects of radial and longitudinal fields of the plasma wave on the injected particles.
Although the particular case considered here is that of a beat driven plasma wave,
the model is readily extended to the PWFA by appropriate choice of the radial
electric field E,(r, z,t).

We assume Gaussian radial profiles for the laser pump bearns, the resultant
plasma wave and the injected electron beam. The expressions for the radial and

longitudinal fields of the plasma wave for Gaussian pump beams are given by [24]

a2
E.(r,z,t) = e e e o lwpt cos(kpz — wyt) — cos kyz sin wyt] (2.14)

€
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Er,z,t) = YD e rT [wptsin{k,z — wyt) — 2(1 — coswyt) — sink,z sinwyt]
]

(2.15)
where
z = longitudinal coordinate
r = radial coofdinate measured from centerline of beam
R = laser beam mean radius
Qem = (E—n%‘uﬁi_"_c)z is related to the square of the quiver
velocity of the background electrons in the laser field
FEer, = amplitude of the laser pump feld

Wem = laser pump frequency.

The electron equation of motion solved in the simulation is the vector form of

equation 2.14 where

T =T, + 7, (2.16)
E=FE, +FE, (2.17)
P=P +P, (2.18)
in addition
P = ym,v (2.19)
P (2.20)
me 1 + ',r;{;'ci‘

dr dz

o = and — = U (2.21)

The above expressions for E, and F, were derived using a linear fluid model in
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which the secular growth of the plasma wave was taken into account, and which
appears as the wyt term that multiplies the sin and cos terms [24]. In this study the
plasma wave is assumed to have been previously excited and has reached a maximum
value which is constant for the duration of the transit time of the electrons. The
assumption was made that e times the maximum amplitude of the longitudinal field
on axis was equal to the wave breaking field, E,;, = mecwy/e, and thus the time
for the field to reach this amplitude was ¢ = 1 /Cemtwy. Therefore the secular growth
factor, wpyt, was replaced with 1/, in the simulations. From ﬁhe amplitude of E,
on axis, e mycwy,/e, we see that € in this notation is the peak wave field normalized
to the cold wave breaking field, m,cw, /e.

The simulations were run for 75 plasma wave periods which permitted resolution
of variations in the electron trajectories, energy and phase which occur early on
in a finite length v, = 13.7 beatwave experiment. The radial width of the laser
beam used in the example we give below is smaller than that of the electron beam,
therefore the Gaussian variation of the electron’s density across the width of the
‘plasma wave is small. This is also likely to be the case in other experiments although
our model permits many other choices for the transverse variations of either the
electron beam density or the plasma wave fields. Figure 2.11 is a plot of the radial
widths of the laser beam, plasma wave and electron beam, as measured in one of
the UCLA beatwave experiment [8]. The plasma wave overlaps a small fraction of
the electron beam, and the ratio of the cross sectional areas at the minimum waist
is approximately 0.03. Figure 2.12 illustrates the radial variation of plasma wave
fields, E. and E,, near the axis and at an arbitrary position in phase. Both E, and
£, can be positive and negative, meaning that they can be focusing or defocusing,
and accelerating or decelerating, respectively. Note that while the absolute value

of £, is maximum on axis, F, is zero on axis and peaks off axis. Also E, can he
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Figure 2.11: Comparison of the measured Gaussian widths of the lasers, plasma
wave and electron beam in the original UCLA beatwave experiment.

comparable to E, particularly as the plasma wave’s transverse dimension approaches
its wavelength. On a longer time scale involving ion motion this strong radial electric
field makes the plasma wave unstable against transverse breakup and causes the so
called resonant self-focusing of the laser beams.

Figure 2.13 illustrates the longitudinal variation of E, and E,. It also shows
the axial positions where the longitudinal field is accelerating or decelerating and
where the radial field is focusing or defocusing. The region from -90 to 0 degrees is
both focusing and accelerating and is the ideal phase region in which the electrons
shouid be located for attaining maximum acceleration.

The electron trajectories (radial versus longitudinal positions) were calculated
for a 7, = 13.7 plasma wave and are plotted in figures 2.14(a) and 2.14(b) as a
function of the fractional plasma wave amplitude (¢ = 5% and 10%, respectively).

The electrons are injected at 6, = 0 and all have v, = 4. Electron trajectories
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that oscillate about the axis are focused. Figure 2.14(a) shows the trajectories for
electrons injected into a 5% plasma wave, and having radii that vary from 0 to 50 pm
(2.3 ¢/w,). These trajectories do not oscillate about the axis, but make one crossing.
The electrons are injected at 8, = 0 where the focusing is strongest, which explains
the sharp bending of the trajectories toward the axis at the start of acceleration.
However, the electrons move eventually into the negative phase region where the
focusing gradually weakens and becomes defocusing past 90 degrees. Although the
electrons eventually get defocused, they are continually in the acceleration region
while moving in the negative phase region, which will result in some acceleration
for electrons injected at r < 10 um before they eventually get deflected from the
beam. If the accelerated electrons are extracted at this point they will emerge with

a very large angular spread although they were injected exactly parallel to the axis.

Figure 2.14(b) shows the trajectories for electrons injected into a € = 10% plasma
wave, and having radii that vary from 0 to 50 pm. Electrons having initial radii out
to about 30 pum oscillate about the axis and are trapped. The figure shows that the
period of this oscillation increases and the amplitude of the oscillation decreases in
the lab frame as these electrons accelerate. The 40 um trajectory appears as if it
will cross the axis after a longer acceleration distance. Whether or not this 40 pum
trajectory will get trapped will likely depend on the relative strengths of the radial
and longitudinal fields at the various radii that it traverses.

The variation of the electron trajectory as a function of initial electron energy
was also investigated. It was found that as the injection energy of the trapped
electrons increases, the period of oscillation decreases and the amplitude of oscil-
lation decreases. These oscillations are nothing more than the classical betatron

oscillations in an accelerating cavity.
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Figure 2.14: Variation of electron trajectories with radius of injection in a 2-D
plasma wave for (a) € = 5% and (b) ¢ = 10%.
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Figure 2.15 (a) and 2.15 (b) show trajectories for electrons injected at a par-
ticular radius (r = 20 pm), energy v, = 4 and with injection phases varying in
four equal steps from 6 = —7/2 to +x/2. Figure 2.15 (a) shows that none of these
electrons is trapped in the € = 5% wave. However the electron injected at 8 = /4
stays close to the axis long enough to gain some energy. The electron injected at
¢ = —m /2 spends most of its initial acceleration time in the region where defocusing
is getting stronger, and therefore is immediately deflected away from the axis. The
other electrons (¢ = — /4 through -+ /2) are initially focused since they spend the
initial part of their acceleration time in the focusing region. Figure 2.15 (b) shows
that, in the ¢ = 10% plasma wave, only the electron injected at 6 = O deg is trapped
and is expected to gain significant energy. All other electrons start or slip back into
defocusing regions. The § = +/4 electron makes two crossings of the axis before

being deflected and is therefore expected to gain a small amount of energy.

2.4 Influence of Beam Emittance: Three Dimen-
sional Model

The previous studies showed that the electrons which are accelerated to high
energies idgally have initial transverse positions that are close to the plasma wave
symmetry axis and are injected near the zero phase point (potential minimum) the
wave. In this section we investigate the effects that transverse momentum has on
the number of electrons accelerated and on the amount of energy they gain. A three
dimensional (3-D) plasma wave model is used to predict the energy, momentum, and
radial and phase distributions of electrons that have been injected into a relativistic
plasma wave. Emittance is used to obtain the electron beam’s angular spread and

thus to give the electrons random initial momenta in the z and y directions.
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The equation of motion solved in the simulation is the vector form of equation 2.9

with three components of 7, %, and P where

—a2,2
MeC wpaem e (‘%’2"

E (r,z,1) =+ ) lwpt cos{kpz — wpt) — cos kyz sin wyt] (2.22)

4 oy ) )
Eo(r, 2,t) = — —20 L 0em? \ 5 [wpt sin{kpz — wpt) — 2(1 — coswyt) — sin kyzsinw,t]

ek, R?
(2.23)

4 o w:!r‘z . .
_dmecwpoeny () [wpt sin(kpz — wpt) — 2(1 — coswyt) — sin kpz sin wp]

Ey(riz,t) = ok, R
(2.24)
and
z = displacement of electron from z axis of wave
y = displacement of electron from y axis of wave
% = Uy, %? =, and j—j = U, (2.25)

We solved for P, P, P;, z, y, and z using a leap-frog scheme.

In order to simulate the random initial coordinates of individual electrons in the
injected beam, a random selection technique was used to set the initial conditions.
A uniform pseudorandom number generator was used to select the injection phase
(between —180 and +180 deg) of each electron in the wave. A Gaussian pseudoran-
dom number generator, with a standard deviation equal to the radius of the electron
beam (0.044 cm or 20.1 ¢/w,) as shown in figure 2.11, was used to select each elec-

tron’s z and y coordinates relative to the axis of the plasma wave. A Gaussian
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pseudorandom number generator, with a standard deviation equal to the electron
beam’s angular spread (0.045 radians) which was obtained from the emittance, was
used to select o, and o, which were then used to find the initial transverse momenta

of each electron as follows.
Py =o0.P, and P, =0,P,. (2.26)

The emittance used in the simulation was 207 mm-mrad which corresponds
to the value estimated for the UCLA experiments within a factor of two [8]. In
the simulations 250,000 electrons were injected into a v, = 13.7 beatwave. Each
electron was injected having v, = 4 and the fractional plasma wave amplitude was
¢ = 10%. The simulation duration corresponded to the time for a reference electron
to reach its maximum possible energy provided it was injected on axis at phase
equal to zero. This time was approximately 117 (27 /w,), which corresponds to an
acceleration length of approximately 1.5 em (690c/w,) for the reference electron.
At the end of the simulation the accelerated electrons were counted and their initial
and final energies, momenta and coordinates were analyzed. The results are shown
in the histogram of figure 2.16 and scatter graphs of figures 2.17, 2.18 and 2.19.
Each point on the scatter graphs represents the data for one electron.

The number of electrons accelerated into each energy bin for the cases of with
and without emittance is displayed in figure 2.16. Each energy bin was Ay = 2
wide. The histogram shows that in either case a group of electrons was accelerated
from 7, up to the energy range 14 < v < 20 and another group was accelerated to
the higher range 44 < v < 62 centered at «y & 54. Considering that the acceleration
length is approximately 1.5 cm, electrons in the higher energy group experienced

an effective accelerating gradient of approximately 1.7 GV/m. The inclusion of
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Figure 2.16: Accelerated electron energy spectrum for electrons having 7, = 4
injected into a v, = 13.7 plasma wave and accelerated for 117 plasma periods for
cases with and without initial emittance. This acceleration time is the time for a
particie injected on axis with zero phase to reach maximum energy.

an emittance of 20r mm-mrad in the simulation reduced the number of electrons
accelerated into the higher energy group by as much as a factor of two for some
higher energy bins, and by as much as a factor of five in some lower energy bins.
Of the 250,000 electrons injected into the simulation which included emittance,
approximately 124 were accelerated into the higher energy bins, 84 were accelerated
into the lower energy bins shown in the histogram and an additional 2444 electrons
were accelerated into the v = 8, 10 and 12 bins which are not shown in the figure.
The remainder of the 250,000 electrons were either decelerated, or did not experience
acceleration above the v = 6 energy bin. The electrons in the higher energy bins
centered about v ~ 54 in the histogram clearly are trapped by the plasma wave,
however it is not clear that the electrons in the lower energy bins are trapped
or untrapped. The 1-D analysis of trapping (see figure 2.3(a)) showed that the

maximum energy for untrapped electrons is v & 13.7, which is equal to the plasma
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wave's y,. Note that only those electrons with energies greater than v, = 13.7 are
plotted in figure 2.16. Also, only those electrons with in a 8° cone angle that could
be collected and detected by the UCLA apparatus are plotted in the histogram.

Figure 2.17(a) is a scatter diagram of the accelerated electron energies (-y) versus
final phases (@) in the plasma wave at time ¢ = 117 (2r/w,). Data for electrons
having energies below v = 8 are not shown. All of the electrons were randomly
distributed between -180 and +180 degrees at t = 0. At ¢ &~ 117 (27 /w,) most of the
electrons have slipped backward in phase beyond -180 degrees and are untrapped.
These untrapped electrons have been accelerated to energies greater than v = 8 but
less than v = 13.7, which is the maximum predicted by the 1-D analysis. Most of
these untrapped electrons are drifting, except for the few that may gain or loose
energy due to being within the spatial width of the narrow 150 um (6.9 ¢/w,} wide
plasma wave. In the trapped electron phase region (> —180 degj there exist low
energy electrons having energies extending down below v =~ 13.7 and which may
later become trapped and gain energy or untrapped and slip backward in phase.
The highest energy trapped electron distribution extends from phase approximately
equal to —45 to 0 and has a peak of v & 60 at a phase of approximately —30 deg.
This distribution of high energy electrons should continue to gain energy as it moves
forward in phase, and start to loose energy after passing # = 0. The reference
electron is at phase equal to zero and has energy v = 48 in the figure.

Figure 2.17(b) is a scatter diagram of the electron transverse positions (z wy/c)
versus final phases (6) in the plasma wave. The highest energy trapped electrons
form a narrow beam on axis having a maximum diameter of approximately 85 pm
(4 ¢/wp) as shown on the right in the figure. The untrapped electrons (having
f < —90deg) are drifting backward in the wave frame and are shown bunched into

groups in the figure. The bunching is due to the electrons being accelerated or
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decelerated by the longitudinal electric fields of the plasma wave at an earlier time.
In order for the untrapped electrons to have gained energies up to a maximum of
v = 13.7 (as shown in figure 2.17(a)} and to become bunched in space (as shown in
figure 2.17(b)), they needed to have been previously very close to or have crossed
through the narrow plasma wave at the axis before drifting out to large radii. For the
case of zero emittance, only those electrons originally located within or close to the
plasma wave will be accelerated, and most of these will eventually drift out to large
radii. For the case which includes emittance, those electrons that were originally
located at large radii in the electron beam, and far from the plasma wave, may
have a small probability of crossing through the plasma wave provided their initial
transverse momenta (due to emittance) direct them toward the axis. In addition,
the inclusion of emittance may cause electrons originally located near the plasma
wave to not be accelerated to high energies due to having initial momenta which
direct them away from the plasma wave. These factors, along with the fact that
the plasma wave intercepts a very. small area of the electron beam (3%), account
for the small fraction of the total number of electrons that get accelerated.-

Figure 2.17(c) is a scatter diagram of the electron transverse momenta, P,/mec,
versus final phases (f) in the plasma wave. The high energy trapped electrons have
a spread in momenta due to their oscillatory motion although they form a narrow
beam. The untrapped electrons have alternating large and small absolute values
of momenta due to previously being in the region of focusing or defocusing radiai
electric fields as they interacted with the plasma wave.

Figure 2.18 is a scatter diagram of the electron energies () versus transverse
positions (zwy/c). This figure shows the spread in energies of the electrons located
within the narrow high energy beam. The electrons in the range 8 < v < 20 have a

distribution of radii that decreases from approximately 2 mm to 0.2 mm (92 ¢/w,
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t0 9.2 c/uwyp) as the energy decreases through the range. The electrons at wide radii
located outside of the plasma wave are drifting with constant energy.

Figure 2.19 is a phase space scatter diagram showing the electron transverse
momenta (F;/mc) versus transverse positions (zw,/c). The plots show data for
electrons in energy bins centered at v = 10.5, 22.5 and 55 and each bin has a width
of Ay = 5, 15 and 18, respectively. Figure 2.19(a) for the v o= 10.5 bin shows
that electrons are basically in thin diverging hollow cone that is denser near the
inner surface and diffuse near the outer surface. groups that have different angular
orientations. Figure 2.19(b) shows the phase space scatter data for electrons in the
Y = 22.5 bin, and also indicates that these electrons are diverging, but in a very
narrow cone. Figure 2.19(c), with the z axis expanded, shows the v = 55 data

which indicate that the electrons are located very near and on both sides of the
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z axis and that the electrons are converging and diverging as they oscillate about
the axis. As shown by the trajectories of figure 2.14(b) these trapped electrons are
executing betatron oscillations.

We have also considered a case in which the product of the acceleration length
and plasma wave amplitude is held constant while varying both the acceleration
length and plasma wave amplitude. The reason for considering this case is that
an alternative signature for the existence of the beat driven plasma wave is the
generation of Stokes and anti-Stokes satellites copropagating with the incident laser
beams. The absolute intensities of the first stokes and anti-Stokes satellites are
directly related to the number of scatterers in the scattering volume which in turn
is proportional to (n;/n.)As - L. Here A, - L is the scattering volume with cross
section A, and length L. Since n,/n, is proportional to £ this technique yields the
E - L product rather than E. In one version of the UCLA experiments, the wave
amplitude-acceleration length product, E- L, has been estimated from lght scatter-
ing techniques [8] and used in these simulations to predict the electron output. In
this case the plasma source used was a theta pinch (see Appendix B). Three E - L

products were used as follows.

— - 0.013 0.013
E.T=0013, —= and
V2 2

Where E is the dimensionless electric field eE/mocwy. The largest value of 0.013

cm (2.27}

corresponds to the maximum E - L achieved experimentally using the theta pinch
plasma source. From Raman scattering measurements the interaction length is
thought to be at least 0.075 cm. Therefore for each value of E - L, three values
of I, were used: 0.075, 0.150, and 0.300 cm. The data from these simulations are

summarized in figure 2.20 which shows the number of electrons accelerated into the
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Figure 2.20: Number of detectable accelerated electrons (8 < v < 20) versus F - L
product and acceleration length for the UCLA experiment. Only those electrons
emerging from the plasma wave within a cone angle of 8° are counted.

spectrometer detection window (8 < vy < 20). (See Appendix C for a description of
the spectrometer.) The largest number of accelerated electrons are obtained in the
case of the shortest acceleration length and consequently the largest plasma wave. In
the best case, the ratio of accelerated to injected electrons is 33/25000 a 1.3 x 102,

Appendix A is a collection of tables containing data pertaining to beatwave ac-
celeration experiments. Appendix B contains brief comments on the theta pinch,
arc and gas jet plasma sources used at various times in the UCLA beatwave acceler-
ation experiments, along with example energy spectra for each source. Appendix C
contains a description of a sensitive electron detection apparatus designed to detect
single electrons which was used in the UCLA beatwave experiments. In Appendix
D are brief comments on the Osaka University’s plasma beatwave acceleration ex-
periments. In Appendix E is a description of one method of including plasma wave

spatial inhomogeneities in the numerical simulations of the beatwave accelerator,
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and one example is given for the UCLA gas jet plasma source.

2.5 Summary

Computational models have been used to examine the laser plasma beatwave
acceleration experiment and to give physical insight into how relativistic electrons
interact with plasma waves that are propagating with a phase velocity that is almost
the speed of light. These models will be extremely useful in designing plasma
wave experiments and interpreting their results. The model are idealized, however,
and the inclusion of such things as temporal effects, plasma wave harmonics and
plasma non-uniformity would lead to even a smaller fraction of the injected electrons
being accelerated in an experimental situation. These additional effects should be

addressed in future research on plasma wave accelerators.
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Chapter 3

Studies of Transverse Motion of
Relativistic Electrons Through

Relativistic Plasma Waves

3.1 Introduction

The measurement of relativistic plasma waves (RPWs) is a difficult task and,
aside from Thomson scattering, there are no well established diagnostic techniques
[27]. In this chapter, the scattering of an injected relativistic electron bunch by
the RPW as a diagnostic technique, which may complement Thomson scattering,
is investigated using numerical simulations. In the preceding chapter, 2-D and
3-D numerical models were used to study electmn-acceleration and to predict the
electron energy spectrum in the laser-plasma beatwave accelerator, wherein electron
bunches were injected parallel to the plasma wave’s velocity [25]. In the present
chapter, the same numerical models are used to study the motion of electron bunches
which are injected in the direction that is transverse to the plasma wave velocity.

The electron scattering results of the present chapter are important not only for
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diagnostic purposes [29], but also for the plasma wave undulator scheme [28] which
will be discussed in Chapter 4. For the plasma wave undulator’s radiation to be
coherent, the electron bunch must remain spatially coherent as it passes through the
RPW. This places limits on both the electron bunch and RPW. The determination
of these limits and their effects on the plasma undulator was the original motivation
for the work of this chapter.

The RPWs discussed herein are considered to be excited by laser beatwaves
(optical mixing) as in the UCLA experiments, and their properties are described in
Table A.2. The waves have typical density fluctuations of up to approximately 10%
of the background density (n, = 10'° to 10'” cm™3). Two interchangeable notations
are used to describe the amplitude of the plasma wave density fluctuation, € and
ay. The ¢ was used in Chapter 2 in the laser plasma beatwave study while a,,
also called the wiggle parameter in the free electron laser literature, is used in this

chapter and in Chapter 4.

3.2 Model and Assumptions

The model assumes that the longitudinal fields of the plasma wave are periodic
in the z (wave propagation) direction, and that the maximum value of the field is
constant. The transverse fields have a Gaussian profile in the directions perpen-
dicular to 2. The fields vary in time at the plasma frequency. The velocities of
the electrons and the phase velocity of the plasma wave are approximately equal
to the speed of light. The space charge repulsion among the electrons is consid-
ered negligible. The a,, is considered small and the wave is linear. A wide plasma
wave (approximately 100 plasma wave wavelengths (\,) wide) was used in these

simulations because many undulations were desired for the plasma undulator radia-
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tion study. In the preceding laser-plasma beatwave study of Chapter 2, the plasma
wave’s full Gaussian width was approximately one A,, and the resulting large radial
field had a strong effect on the electron trajectories, which approximated the situ-
ations found in plasma wave acceleration experiments {8]. Later in this chapter we
will comment on the trajectories of electrons injected transversely through narrow

{one A,) plasma waves.

3.3 Single Electron Trajectories - Two Dimen-

sional Model Results

Examples of the 2-D plasma wave field and the trajectory of a single electron
drifting transversely through a plasma wave are shown in figure 3.1. Figure 3.1(a)
is the plasma wave field as seen by the electron as it drifts transversely across the
plasma wave. The wave moves from bottom to top in the figure. Figure 3.1(b} is
the trajectory of the electron going across the plasma wave, moving from left to
right in the figure. The major features of the trajectory are: (a) the electron is
wiggled in the direction of the longitudinal plasma wave field, (b) the electron has
a small drift in the direction of the plasma wave velocity, and (c¢) as it exits the
plasma wave the electron is deflected away at an angle from its initial direction of
motion either upward or downward in the figure depending periodically on its phase
of injection. All of these effects are due to the plasma wave’s longitudinal electric
field. The electron bunch’s drift, which is generally just a fraction of a micron, would
be difficult to measure in the laboratory. However, the deflection angle, which could
result in large changes in the direction of an individual electron’s trajectory after
it exits the plasma wave, varies with the electron’s injection position and energy,

and also varies with the plasma wave’s properties. The deflection angle depends on
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the phase at which the electron enters and exits the plasma wave, and therefore is
influenced by the electrostatic field at the edges of the plasma wave which is weaker
than the fields at the center of the wave. In an experimental situation, electrons
in a bunch would enter the plasma wave at all phases and radii, and there would
be a distribution of deflections, which appears as a change in the shape and size of
the beam’s cross section, or "spot”. These changes will be studied using the 3-D
simulations of the following section.

A qualitative summary the observed results of varying the plasma wave and
electron beam parameters in the 2-D simulation is as follows. Increasing the plasma
wave’s amplitude causes the drift, deflection angle and wiggle amplitude to increase,
but the wiggle period remains the same. Increasing the plasma wave’s Gaussian
width causes the drift and deflection angle to increase, but wiggle amplitude and
period remain the same. Increasing the electron’s injection energy causes the drift,
deflection angle and wiggle amplitude to decrease, but the wiggle period remains
the same. Increasing the plasma wave’s wavelength causes the drift {o increase and

the deflection angle to increase.

3.4 Electron Bunch Spot Size Variations - Three
Dimensional Model Results

In the 3-D simulation results discussed in this section, the electron bunch con-
tains 5,000 particles which have a uniform random distribution along the direction
(y) of the bunch’s velocity and have a Gaussian random distribution in the direc-
tions transverse (z, z) to the bunch’s velocity. The plasma wave’s velocity is in the
z direction. The Gaussian half width of the electron bunch and plasma wave are

approximately 0.050 ¢cm and 0.50 cm, respectively. The electron bunch is 10 mm
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Figure 3.1: (a} The longitudinal electric field seen by the electron as it traverses the
plasma wave and (b) the electron trajectory through the plasma wave. The plasma
wave moves upward in (a) and the electron moves to the right in (b). Emittance
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Figure 3.2: Geometry of plasma wave diagnostic scheme, showing propagation di-
rections for the excitation lasers, plasma wave, and electron bunch.

long, which corresponds to an electron pulse period of 33 psec. At the start of the
simulation, the front of the electron bunch is —0.75 cm from the centerline of the
plasima wave, and at the end of the simulation the front of the bunch is approxi-
mately 10 cm past the centerline. Figure 3.2 shows the relationships between the
directions of propagation of the excitation lasers, plasma wave and electron beam.
Also shown is an idealization of the use of a “screen” to measure the electron bunch
density distribution (spot size).

Figure 3.3 shows the effects of variations of plasma wave amplitude, or a,,, on
the electron bunch density distribution when the emittance is zero. In this figure
the pattern of scattered dots represents the electron distribution after the bunch has
passed perpendicularly through the plasma wave and has drifted approximately 10
c¢m away from the wave’s centerline. The electrons can be imagined to be collected
on a “screen” as shown in figure 3.2. The plots show the end-on view of the bunch

with the electrons moving up out of the plane of the figure while the plasma wave
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Figure 3.3: Variation of Electron Bunch Spot Size for a,, = 0.0, 0.05, 0.10 and 0.50.
The plasma wave moves to the right in the figure and the electrons move out of the

page.
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moves from left to right. Figure 3.3(a) shows the electron distribution for fractional
plasma wave amplitude equal to zero, which corresponds to no plasma wave present.
This distribution is the original injected electron distribution, since the electrons
travel in straight lines when the plasma wave amplitude and emittance are zero.
Figures 3.3(b), (¢), and {(d) show the electron distributions when the plasma wave
amplitude is increased to a,, = 5%, 10%, and 20%, respectively. We see that the
bunch has been elongated (from about 2 mm to about 6 mm wide) in going from
aw = 0% to 20% fractional plasma wave amplitude. The elongation is in the z
direction, parallel to the plasma wave motion, indicating that the spreading is due
to the longitudinal plasma wave field. This elongation may have potential as a probe
of the plasma wave amplitude. Figure 3.4 summarizes the change in transverse spot
dimensions, z and z, of the electron bunch as a,, is increased. A statistical software
package was used to measure the standard deviations in the x and z directions
{i.e. “sigma x” and “sigma z”) of the distribution of electron positions in the spot.
Figure 3.4 shows that the spot width in the longitudinal field direction, 2, increases
approximately uniformly with a,,, while the spot width is almost constant in the
transverse field direction, x.

Additional graphical studies (not shown) indicated that the radial plasma wave
electric flelds, I, and E,, had no effect on the longitudinal spreading of the electron
bunch in the z direction, even for the very narrow plasma waves ha;ving 0.005 om
(0.5 Ap) Gaussian half-width. For wide plasma waves the transverse E, and E, ficlds
had very little effect on the electron bunch in the z and y directions, but for the #ery
narrow wave in which E, and E,, are large, changes in the transverse directions were
observed. For very narrow plasma waves the electron bunch’s distribution spreads
in the x direction {vertical in the scatter diagrams) and in the y direction, but still

remains very dense near the center. This is shown in figure 3.5, where the spreading
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Figure 3.4: Summary of variation of electron bunch spot size with a,,. Emittance
=0,7 =4, and v, = 9.7,
in the x direction is due to the radial field of a one A\, wide plasma wave. Figure 3.6
summarizes the change in transverse spot dimensions, z and z, of the electron bunch
as the width of the plasma wave is decreased. These results show that the RPW
probably would not be suitable as a diagnostic of the longitudinal field or as a
plasma wave undulator for plasma wave widths below about 5 A,. However the
scattering of electrons from the beam might possibly be used as a diagnostic of the
strong E, radial field. The effect of the radial E, field of a narrow wave would be to
cause the shape of the electron bunch to have a conical leading edge (not shown),
due electrons near the center of the bunch being accelerated ahead of the electrons
near the edge. This shape change rrﬁght possibly be used as a diagnostic of the
strong E, radial field of the plasma wave.

Also examined was the effect on the electron bunch distribution due to changes

in the wavelength of the plasma wave, and it was found that longitudinal spreading
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increased approximately linearly with wavelength, for the case of no emittance,
as shown in figure 3.7. The four wavelengths plotted in figure 8.7 correspond to
the four laser beatwave combinations shown in Table A.2. This figure shows that
this scheme possibly could be used as diagnostic of the plasma wave wavelength,
provided that other variables, such as a, and ~,, were known.

Also examined was the effect on the electron bunch distribution due to changes in
the electron energy, -,, as shown in figure 3.8. This figure shows that the difference
in the z and z dimensions of the spot decreases as 7, increases, indicating that
the longitudinal plasma wave field has less effect on the spot size of more energetic
beams. Therefore this diagnostic scheme is best suited for lower energy beams.

However, instead of spreading, at high energies (v, & 100) a bunching or grating
pattern in the direction of the longitudinal field was observed in the spot distribution

of the electron bunch, as shown in figure 3.9. The bunching or grating spacing is
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Figure 3.8: Summary of variation of electron bunch spot size with electron injection
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the wavelength of the plasma wave. The change in the spot with Yo can be seen by
comparing figure 3.3(c) in which «, = 4, with figure 3.9(b) in which ~, = 100, for
the same plasma wave a, A, and v,. The two figures are on the same scale and
show that the longitudinal spreading is not present and that the grating appears at
high electron energies. The spreading is due to the deflection of the electrons as they
exit the wave in the region where the wave is smaller in magnitude. A higher energy
electron would be less affected by the weaker fields at the plasma wave’s edge and
would spread less as shown in these figures. The bunching is probably due to the
stronger plasma wave fields near the center of the wave, and is probably present even
at lower electron energies, but is not visible because spreading causes electrons from
neighboring bunches to cross each other as they exit the plasma wave. This grating
phenomenon could possibly be used as a diagnostic of the plasma wave wavelength

or could be used just to obtain a density modulated beam for some other application,
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such as a reflection grating or lithographic pattern making. Figure 3.9(a) is a view
looking down on the electrons as they move upward in the figure and the plasma
wave moves to the right. This figure shows that the grating runs the length of the
pulse and appears straight and uniform.

The change in the energies of the electrons in the bunch after passing transversely
through the plasma wave was also investigated using the model, for the case of no
emittance. In one instance, all electrons were injected having v, = 4.00 and after
drifting transversely through the plasma wave (v, = 9.7 and € = 10%) the energy
spread was found to be 3.96 < v < 4.04, or 2%. This energy spread is probably due
to the E; radial field and could possibly be used as a diagnostic of that field.

Also examined was the effect of changes in the electron bunch emittance on
the bunch distribution. Figure 3.10 shows bunch distributions after having passed
through a plasma wave of a,, = 10% and 4, = 9.7, and four different values of beam
emittance. Figure 3.10(a) is the bunch distribution when the initial emittance is
zero, and is the same as figure 3.3(c) but on a different scale. In figures 3.10(b), (c)
and (d) the emittance is increased to 10, 20, and 40 mm-mrad, respectively. Typical
plasma wave experiments at UCLA utilize electron bunches having emittance on the
order of 20 mm-mrad [8]. These figures show that the emittance of this magnitude
randomizes away any coherent spatial structure in the bunch’s distribution.

Figure 3.11 summarizes the change in the spot dimensions, z and z, of the elec-
tron bunch as the emittance is increased. Figure 3.11(a) shows that the increase
in spot size in both dimensions is linear with emittance. However, figure 3.li(b)
shows that there is a value of emittance, approximately one mm-mrad, below which
the spot size is constant. This means that the preceding results of this chapter that
required a zero emittance beam would probably be valid for a beam with emittance

as high as one mm-mrad. In any case, improvements in electron beam sources, pos-
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sibly utilizing laser driven photocathodes, would be required if transverse injection
of a beam through a plasma wave is to be used as a diagnostic or as a plasma wave

undulator.

3.5 Summary

The use of transversly injected eiectron bunches as a diagnostic of plasma wave
properties has been shown by numerical simulation to be feasible in the limit of
wide plasma waves and lower energy low emittance electron beams. The angular
deflection in the z direction for a cold electron beam of energy =, injected across

the plasma wave of amplitude a,, and wavelenth A, is summarized as

KAplay
Yo

AG (3.1)

where « is a constant. The angluar deflection is greater than the angular spread of

the incident beam of radius ¢ for normalized beam emittance of

€n = VE < KApluO. _ (3.2)

If larger beams are used, the allowable emittance before the structure is lost should
increase in proportion to the beam size.

This study has revealed that this beam-wave interaction is rich in effects, in-
cluding longitudinal and radial beam spot spreading, energy spreading, and beam
grating formation. This study was an idealization in that it ignored such things as
nonlinear plasma wave effects, plasma wave growth effects, electron beam collective
effects and beam-plasma instabilities. In general, these effects would work to spoil

the ideal results, however in some limits the ideal results may hold. The next step
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should be to refine the present results by including nonideal eflects to determine
the limits of applicablity. If the results are optimistic, perhaps experiments can be
done to test this scheme as a diagnostic.

As far as the plasma wave undulator is concerned, the spatial spreading appears
only after the electrons have drifted some distance beyond the plasma wave. The
radiation is generated only during the short time the electron is inside the plasma
wave. However, to minimize deflection of electrons from the bunch that might occur
inside the wave, a wide plasma wave (having a small transverse electric field) and

a relatively larger electron energy would be preferred.
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Chapter 4

Studies of Classical Radiation Emission

From Plasma Wave Undulators

4.1 Introduction

‘There is a significant ongoing research effort focused on producing short wave-
length coherent radiation having wavelengths down to the x-ray regime using rela-
tivistic electron beams that oscillate in undulator fields. Many examples are found
in the fields of free electron lasers and synchrotron radiation sources [30} [31]. It
is well known that the radiated wavelength, A;, can be reduced by decreasing the
undulator (wiggler) wavelength, A, or by increasing the electron energy, ~, in ac-

cordance with the resonance relation:

Ar OX % (4.1)

The generation of coherent radiation in the x-ray regime using undulators was ac-
complished long ago by using large « electron beams, but this was done at very

large and expensive accelerator facilities [32]. It should be possible to reach the x-
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ray regime using less expensive and more compact low 7 electron beam facilities by
decreasing Ay,. In the original undulator and synchrotron radiation schemes, and in
most configurations since then, magnetic field undulators were used [33]]34](35). In
magnetic field undulators the minimum A, obtained currently is in the range of 0.1
to 1.0 em, and is limited by the practical difficulty of placing very strong and very
small permanent magnets or electromagnets close together in an alternating array.
Among alternative approaches to decreasing ), are to replace the magnetic undula-
tor with an electromagnetic wave undulator and with a crystal structure undulator,
and much research is underway in these directions [36][37]{38][39][40][41].

A different approach has been suggested for decreasing A, which is to replace the
magnetic undulator with an electrostatic plasma wave undulator. This potentially
inexpensive and compact configuration is based on using a short wavelength large
amplitude relativistic plasma wave as the undulator, through which is injected a
modest energy but relativistic electron beam [28] [48]. In this scheme the electrons
propagate parallel to the wavefronts of the plasma wave and emit radiation as
they oscillate in the wave's alternating electrostatic field. Such large amplitude
relativistic plasma waves can be excited readily by laser pulses or intense electron
bunches and are being studied theoretically, computationally and experimentally by
many researchers around the world [42]. In this chapter the characteristics of the
classical radiation emitted by electrons in the plasma wave undulator are studied.

Figure 4.1 shows schematically the relationships among the propagation direc-
tions of the excitation lasers, plasma wave, electron beam, and radiation in this
scheme. In this particular configuration the plasma wave is shown as if it were
excited by laser beams as in the beatwave excitation scheme, however it also could
have been excited by a short laser pulse (laser wakefield scheme) or by a short pulse

of relativistic electrons (plasma wakefield scheme) propagating through a plasma.
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Figure 4.1: Undulator geometry, showing propagation directions of the excitation
lasers, electron beam, plasma wave, and radiation.

The wiggling of an electron as it moves across a plasma wave undulator is described
qualitatively by referring to figure 4.2, in which the potential contours of the plasma
wave are shown to be very wide so that only the longitudinal electrostatic fields af-
fect the electron motion. In the figure the plasma wave moves to the right at a
phase velocity which is nearly equal to the speed of light while the electron moves
downward also at nearly the speed of light. In figure 4.2(a) the longitudinal field
deflects the electron to the left toward the potential minimum. In the time taken
for the plasma wave to move to the right by one-half wavelength, the electron also
moves across the wave vertically down a distance of one-half wavelength. This is
because both wave and electron move at approximately the same speed. Therefore
the undulator wavelength, A, is effectively equal to the plasma wave’s wavelength,

Ap- At its new location, figure 4.2(b), the electron is again deflected toward the
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potential minimum that is now to the right. This alternating or undulating motion
continues as the electron passes across the plasma wave, figure 4.2(c).

Typical physical parameters for a plasma wave undulator are: undulator wave-
length, A, = 100 pm; undulator strength, a,, > 0.01; number of undulations or
wiggles, NV, = 100; and length of undulator, L,, &~ 1.0 em. These are typical labo-
ratory parameters for a wide beatwave excited relativistic plasma wave. An electron
beam of 20 MeV (v = 41) would emit 30 nanometer radiation in the above plasma
undulator. The resonance relation, equation 4.1, is used to estimate the radiation
wavelength. A single 30 picosecond micropulse of electrons (typical of a linac out-
put} that passes across a 1.0 cm wide plasma undulator would emit a radiation
pulse approximately 30 picoseconds in duration.

The maximum electrostatic fields in a relativistic plasma wave can be very large,
equivalent in undulator strength to magnetic fields on the order of 1.0 megaGauss for
100 pm plasma waves. To show this we first note that a,, for the plasma undulator

can be derived from Gauss’ law and is

E,
- . . (42

MoCwp  Emar 7o

where
E, =amplitude of the plasma wave electrostatic field
Eorner =maximum possible amplitude of an electrostatic
field in a plasma for a given plasma density
(or given plasma frequency)
wy, =plasma frequency= 4nn.e2/m,
e =electron charge

m, =electron rest mass
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Figure 4.2: Electron’s undulating trajectory in the potential countours of a plasma

wave undulator.
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¢ ==speed of light
n, =background plasma density

ny; =perturbed plasma density

The maximum effective magnetic field of a plasma undulator can be estimated

using
2T Mo C? 10*
f = ey = e = 3 % 1073 /n,(om 3 4.3
B, s o, a o (o) 3% ne(cm—3} (4.3)

or Bey & 9.5 x 10° Gauss for a,, = 1.0 and A, = 100 um. For comparison, in typical
permanent magnet undulators the magnetic field is on the order of tens of kiloGauss
and less. To get 30 nanometer radiation from a A, = 1.0 cm, a, = 1 magnetic
undulator would require an approximately 200 MeV electron beam. Equivalently,
20 MeV electron beam would radiate 3 um radiation in this magnetic undulator.
The potential problems related to the facts that the electron beam can excite
instabilities in the plasma and that the plasma wave’s electrostatic fields can de-
flect the electron beam in undesirable ways must be considered in designing plasma
wave undulators. In recent years some of these problems have been investigated
theoretically and computationally and found not to be serious limitations provided
that the electron beam is not too dense and that the plasma wave’s transverse elec-
trostatic fields are small. The limit on maximum electron beam density is imposed
by the beam loading limit as discussed in Chapter 2 and reference [19]. Transverse
electrostatic plasma wave fields should not be a problem as long as the plasma wave
is much greater than five plasma wavelengths wide, as discussed in Chapter 3 and
reference [29]. Our simulation results showed that electron beam quality is very
important and that the beam emittance should be less than one mm-mrad for the

example parameters discussed in this chapter. Methods for plasma wave excitation,
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calculations on the limitations of FEL action due to beam plasma interactions, and
the parameters for radiation gain have been reported {28]. Some of the problems
associated with building a uniform high density plasma source suitable for plasma
wave undulators have been reported [43]. The problems of electron beam deflection
due to the longitudinal and radial electrostatic fields in the plasma wave undulator,
the effect of beam emittance, and the use of the deflected beam as a diagnostic of the
plasma wave’s electric field have also been studied through numerical calculations
(Chapter 3 and reference {29)).

A plasma wave undulator in which an electron beam is injected antiparallel to
the wave, and in which the transverse plasma wave fields wiggle the electrons, has
been theoretically analyzed by Fedele et al.[44]. Fedele presented a fluid theory,
discussed intrinsic efficiency, emittance, self pinching, and alternate configurations.
A plasma wave undulator in which a relativistic electron beam excites the wave in
a cylindrical plasma column has been investigated theoretically by Lalita et al.[45].
Lalita presented an instability analysis and discussed radiation guiding. A magne-
tostatic plasma undulator scheme that does not involve plasma waves, but makes
use of stationary rows of laser produced plasma spots (effective A, = 100 pm) that
are formed on a flat solid target has been reported, along with reports of measure-
ments of megaGauss fields [46],[47]. Another undulator scheme has been suggested
by Yan and Dawson, called the “ac Free-Electron Laser”, in which an electron beam
propagates through a “temporally oscillating but spatially uniform transverse elec-
tric or magnetic structure”[48]. Yan and Dawson obtained the radiation disperéion
relation, expressions for the growth rate and efliciency, and discussed design criteria
for an experiment. One of their suggested configurations is to propagate an elec-
tron beam parallel to the wavefronts of a plasma wave, which is the plasma wave

undulator discussed herein. We note that in order to have a significant electric

71



field the plasma wave must have a phase velocity close to that of light. In such a
plasma wave, the particle trajectories are going to be somewhat different than in
the purely oscillating {(ac) case. In this chapter a single electron analysis of the ac
FEL undulatdr will be presented concurrently with the analysis of the plasma wave
undulator. Finally, we note that a fluid theory analysis of the ac FEL has also been
reported[49], and further work on enhancing the output power of an ac Raman FEL
has been reported|50].

As stated earlier, the relativistic plasma waves may be produced by laser beat-
wave excitation, laser wakefield excitation or plasma wakefield excitation. Some
typical plasma wave undulator wavelengths that can be obtained using laser plasma
beatwave excitation are as follows (see Table 2.1). Using laser wavelengths of 9.6
and 10.6 pum gives A, = 97 pum; using 9.6 and 10.3 pm laser wavelengths gives A, ~
135 pum; using 10.3 and 10.6 pm laser wavelengths gives A, = 343 um; and using
1.05 and 1.06 pm laser wavelengths gives Ay, & 101 um.

In section 4.2 are described the plasma wave equations, equation of motion and
details of the 3-D simulation model. In section 4.3 are described the perturbation
techniques used to obtain analytic equations for the electron trajectories. These
trajectories are plotted and compared with the simulation results. In section 4.4
are described the derivations of the approximate equations for the spontaneocus
radiation from which are obtained the frequency spectra and angular distributions
for different harmonic numbers. The analytic results are plotted and compared with
computer simulations. In section 4.5 is described the derivation of the approxirﬁate
analytic equations for the stimulated radiation gain which is due to a copropagating
electromagnetic wave. The gain versus time and versus detuning are plotted and
compared with the simulation results. Electron bunching due to the copropagating

electromagnetic wave is also described. Section 4.6 is the conclusion. Many of the
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techniques followed herein for analyzing the plasma wave undulator, and much of
the notation, are based on the free electron laser theory developed by Colson{51]

[52].

4.2 The Plasma Wave Equations and the Simu-

lIation Model

The relativistic electrostatic plasma wave is assumed to be infinite in length,
finite in width and moving in the +y direction in this model. The relativistic
electrons are injected in the +z direction perpendicularly through the plasma wave
as shown in figure 4.1. The electron’s initial velocity is parallel to the plasma wave’s
wavefronts. The oscillating longitudinal field, E,, of the plasma wave is responsible
for the undulating motion of the electrons in the =y direction. The oscillating
transverse fields, E, and E,, of the plasma wave are perpendicular and parallel,
respectively, to the electrons’ initial velocities, and have negligible effect on their
motion. This is because the plasma wave is wide (Gaussian half width R = 50, =
0.5 ¢cm) and therefore the transverse fields are small. The relativistic equation
of motion for the electrons and the equations for the longitudinal and transverse
electrostatic plasma wave field components are the same as used in Chapter 2 and
3. We use equations 2.22, 2.22, and 2.22, except that the equation subscripts are
renamed to be compatible with coordinate definitions shown in figure 4.1. The
electron beam model assumes point charges which interact with the electrostatic
fields of the plasma wave but which do not interact with each other through space
charge forces. Radiation damping is considered to be negligible.

In the 2-D simulation, a single electron is injected into the plasma wave from

a position far from the centerline of the wave (z &~ —3R, where R is the Gaussian
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width of the plasma wave). The electron’s position (z,y, z), velocity (5z, 8y, 8:), and
acceleration (Bm, By, ﬁz) are calculated along the trajectory until the electron reaches
the opposite side of the wave (z &~ +3R). The electron is injected at time equal
zero with phase equal zero with respect to the plasma wave (i.e. y(0) = 0). The
trajectory of the electron and the electrostatic field it sees are shown in figure 3.1.

In the 3-D simulation a micropulse of thousands of electrons is injected into
the plasma wave so that the front of the micropulse starts at 2 &~ —3H. The
spatial distribution of electrons in the micropulse is determined by a unifori random
number generator for the direction of beam propagation, z, and is determined by a
Gaussian random number generator for the perpendicular directions, x and y. The
electron micropulse has a Gaussian halfwidth of 5, in the x and y directions. Each
electron’s position, velocity and acceleration are calculated along the trajectory until
the rear of the bunch reaches the opposite side of the wave (z =~ +3R). Electron
beam emittance can be included and is used to determine an initial perpendicular
deflection for each electron using a Gaussian random number generator as described

previously in Chapter 2 (equation 2.26) and reference {25]

4.3 Electron Trajectories

Approkimate equations for the electron trajectories in the plasma wave undu-
lator are obtained by substituting a simplified expression for the plasma wave field
into the relativistic equation of motion and solving it by perturbation. The lowest
order approximation of the electron trajectory in the plasma wave undulator is also
the approximate electron trajectory in an ac FEL undulator. The ac FEL undulator
is spatially uniform, has k, = 0 and oscillates at frequency w;.

The plasma wave fields (equations 2.22, 2.23, and 2.24) were simplified by as-
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suming that the laser pump field or electron quiver velocity is small (G, is small)
and that the plasma wave is wide (R is large). Then the predominant plasma wave

field component acting on the electron in the laboratory frame is

_ QuMoCwy

E, cos(kyy — wpt) = F,cos(kyy — wpt). (4.4)

7

The trajectory is found by solving the Lorentz force equation,

c?

do(t) _ e

7 po— , (4.5)

where £ = E, and the velocity is expanded in terms of the small parameter, ¢,

T=T,+ el + T+, | (4.6)

First equation 2.22 (with subscript changed from z to y) is approximated by
E, = E,cos(wpt), and the equation of motion is solved to obtain the following

electron trajectory:

Ao C aZ,

Yollp

Vo
2
4] wp

F{t) =wv,t 2+ (1— coswyl)y+ sin 2wpt 2 4 -+ . (4.7

Note that the first term is the zeroth order drift, the second term is the first order
transverse oscillation at frequency w, and the third term is a second order longi-
tudinal oscillation at 2w, (the second harmonic term). The velocity, G, is found
by differentiating 7(¢) and dividing by c. Equation 4.7 is rewritten in a convenient

form for graphing using the dimensionless units

Boc Nuwdp

T:th)\p and ) = w, B

(4.8}
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and becomes the trajectory in units of the length of the undulator, Ny,

7(7) A Qo . a?
— cos r — 1) + —=
Nw /\p '}'oﬁogp ( P ) Y 4702917

sin 20,7 2 + - - - (4.9)

where 3, = \/1-——1/73 . Equation 4.7, or 4.9, is the approximate equation for the
electron trajectory in an ac FEL undulator.

Next, in order to obtain the approximate electron trajectory in a plasma wave
undulator (k, # 0), the y component of equation 4.7 is substituted into equation
4.4 to obtain

E, = F,cos (M (1— coswyt) — wpt) . (4.10)
Yoldp
The trig terms are expanded as a series in J,{v), keeping only the lowest order
terms, where J,, is the n™ order Bessel function of the first kind. Equation 4.10 is
then substituted into the equation of motion which is again solved by perturbation.
The resulting approximate equation for the electron trajectory in a plasma wave
undulator in dimensionless units is

~ Qg
=TZ
N, w Ap ’Yoﬁoﬂp

{Jo(v) (— cos(v — Qu7) + cos v + Qrsinv)

wi%‘]l(u) [QQﬁ‘r? sinv — sin(y -~ 2Q,7) + sin(v) — 2Q,7 cos(z/)] } G+
(4.11)
where v = kpcay /wpYo. In this approximation the plasma wave field was assumed
to be linear and thus was not expanded in terms of its harmonics. Using fields
expanded in higher harmonics would produce additional terms in the above expres-
sions at the respective harmonics (see Appendix F and [53]). The expressions for
the trajectory and velocity obtained in this section will be used in the next section

to calculate the radiation analytically.
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The dimensionless electron trajectory in a plasma wave undulator, equation 4.11,
is plotted in figure 4.3. Electrons enter the undulator at 7 = 0 and exit at 7 = 1.
However in order to spatially resolve the electron undulations, only the first 30% of
the undulator is plotted. In figure 4.3 the undulating electrons drift in the direction
that the plasma wave moves and the amount of drift increases with a,, and decreases
with . In the simulation, the original unsimplified expressions for the plasma wave
fields (equations 2.22, 2.23, and 2.24) were numerically integrated to ol;tain the lab
frame trajectory. The lab frame trajectory calculated by simulation is shown in
figure 3.1(b) which also shows a drift in the direction of the plasma wave motion, in
qualitative agreement with the analytic result, figure 4.3. The Gaussian profile of
the plasma wave field used in the simulation causes the drift to be more gradual at
the edges of the plasma wave. The simulation also shows that there is a deflection
of the electron from its initial direction of motion that results as the electron exits
the plasma wave, as was discussed in Chapter 3 and reference [25]. The analytic
trajectory of an electron through the ac FEL looks similar to figure 4.3, except that

there is no transverse drift.

4.4 Spontaneous Radiation

The approximate equations for the frequency spectrum and angular distribution
of radiation emitted by an electron in a plasma wave undulator are found by sub-
stituting the equations for 7 and 3 into the well known expression for the intensity,

I, of the radiation emitted per solid angle, dQ, and frequency interval, dw,|[54]

T

dQdw,  4rw2c

Bl eh?

+00 _ _ L 2
/ 7 x (f x B(t)) €A/t (4.12)

—0Q
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Figure 4.3: Analytic electron trajectory in a plasma wave undulator.

where #i = sinfcos¢ T + sinfsing § + cosé 2, and 6, ¢, and 7 are defined in
figure 4.1. We integrate analytically over the finite interval [¢| < Nynx/Bow, because
the radiation emitted during the time the electron is outside the undulator is zero.
The radiation of .haarmonic number f; (¢ = 1,2,3,...) from an electron in the plasma
wave undulator is then

d*I
dQdw,

e [sin (21— Goeosh) + A ) E27 P
f‘.m 4m?c (ﬁi (1—60cost9)+A—f.i)wp (1““500059)

X (sin%’ PP + % sin26 sing (P*Q — PQ*) + (1 - sinzﬁ) sin®¢ QQ*) (4-.13)
where

a®J3 ()5,
4

P =24, (AO + B,J{) + cos 20 (Ag" + B+ B:—-Q) (4.14)
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Q = aA] + aJ (o) cosa (Bn+1 B;,,l) (4.15)

M= -4oo
Ao = Jg(a) Z Jm(li)é(gm,f) (4.16)
m~+oo
Z In(8) (Bammry % Samnp) (4.17)
" n=+4oco ] M=+ o0
BT? = Z szn(A) Z Jm(lﬁ) (6{2m+,7'f) + (5(2mwn,f)) (4.18)
n=1 M= — O
o=t (4.19)
WpTo
2 g2
K= BuJo (@) Bor cos2a sin# sin¢ (4.20)
Wp
A= o Jo(0) Botsy cosa sinf sin¢ (4.21)
“p
A= M sina sind sin¢ (4.22)
Wp

i= /=1, * signifies complex conjugate and § is the Kronecker delta. Here we have
neglected the harmonic content of the plasma wave undulator itself, however see
Appendix F. The radiation of harmonic number f; emitted by an electron in the ac
FEL undulator can be obtained also and it is

d?1 _
dQidw, P -

¢? |sin (5; (1~ 8,cos8) —f) -‘g—: 2( f; )
A2 (%; (1—B,cos8) — fe) wp 1~ B, cos0

(Sm29 PP* 4 5smm sing (P*Q — PQ) + (1 - sin) sin¢ QQ*) (4.23)

where

P =28, (A, + Bf) + zﬂ'” (Af + Bl , + + B) (4.24)

Q=q (Af + B — Br:—l) (4.25)
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m==-400

Ay = Jo(a) Z Jm(n)é(—i’m,f) (426)
" =400

A7 = of@) 30 In() (Bi-zmin) & S-zmonip) (4.27)

+ =400 ) m=-+oo
BE = Zl "Ja(A) 3 Jmlk) (B-2meiny & Bicomonpy) (4.28)

n= M= —00

A= BB 0 sin g (4.29)

Wp

2
= Guer o (4.30)

8wy

kb=0 and A=0. (4.31)

The single electron radiation intensity as a function of observation angle, 6, and
frequency ratio, wy/wy, up to the second harmonic component is shown in figure 4.4
for the plasma wave undulator and, for comparison, in figure 4.6 for the ac FEL
undulator. The angle is plotted in the range |6 < 1/7, the harmonics correspond
to fi = 2v%, fo = 44% and f3 = 642, and ¢ = 7/2, The radiation is plotted in
units of (e?/4r%c). The figures show that the radiation is centered about 6 = 0
in the ac FEL undulator but it is skewed in the —8 direction in the plasma wave
undulator. This is because of the drift of the electrons in the direction of the phase
velocity of the plasma Waﬁe. There is also a reduction in the magnitude of the
radiation as the harmonic number increases for both undulators. Expressions similar
to equation 4.13 were obtained by Colson for the linearly polarized and circularly
polarized magnetic undulators [51][55]. These different undulator configurations
have very similar radiation characteristics due to the similarity of their line shape
functions. They are all characterized by regularly spaced radiation peaks, which
decrease in frequency and amplitude as the angle of observation varies away from

the forward direction, 6 = 0. The skewing of the plasma undulator’s radiation is
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due to the A term in the line shape function which depends on k, through the o
term. By rotating the dI/dQdw figures, one obtains the angular distribution, dI/dQ,
or the frequency spectrum, df/dw, which are shown in figures 4.5 and 4.7 for the
fundamental harmonic of the plasma wave undulator and ac FEL, respectively.
Figure 4.6 shows that the ac FEL radiates the first and third harmonics on axis
{6 = 0), but the second harmonic is radiated off axis. In general, the odd harmonics
are radiated on axis and the even harmonics are radiated off axis for ac FEL as well
as the linear magnetic undulator. The circularly polarized undulator radiates only
the fundamental on axis and all higher harmonics are radiated off axis [51][56].

In the simulation the radiation intensity for the plasma wave undulator was
obtained by substituting 7, 7 and 73— for each electron trajectory point into the well
known expression for the radiation emitted per solid angle and frequency interval

given by [54]

oo ¢ | (3= Bt)) x )

d?I e? o
—_ iw(t—A-TF(t}/c)
dQdw ~ 4nlie f_m (1 -—B(i)-ﬁ)z e dt! . (4.32)

To obtain dI /dw we numerically integrated equation 4.32 over the trajectory, squared
it, and integrated over the solid angle (with ¢ = n/2). The single electron dI /dw is
shown in figure 4.8 for the fundamental frequency and zero beam emittance case,
which qualitatively compares well with the approximate theoretical result for d1 /dw
shown in figure 4.5(a}). It was found in the simulations that as the number of elec-
trons increased by NV, the radiation in the peak at # = 0 increased as N? and the
width of the peaks decreased as N — 1. It was also found that as the emittance
was increased to values above one mm-mrad, the radiation peak at § = 0 decreased

in magnitude and the discrete spectral pattern became smeared out. This is in
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Figure 4.4: Radiation emitted by the plasma wave undulator versus frequency and
angle for the (a) fundamental, (b) first harmonic, and (c) second harmonic. 7, = 4,
aw = 0.1, (—=1/7 < angle < 1/7), (v < frequency < 6v), and ¢ = /2.
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Figure 4.5: Radiation spectrum and angular distribution in the plasma wave undu-
lator for the fundamental frequency (same conditions as in figure 4.4).
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Figure 4.6: Radiation Emitted by the ac FEL versus frequency and angle for the
() fundamental, (b) first harmonic, and (c) second harmonic. 7, = 4, a,, = 0.1,
(—1/v < angle < 1/v), (v < frequency < 67), and ¢ = 7 /2.
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Figure 4.7: Radiation spectrum and angular distribution in the ac FEL for the
fundamental frequency (same conditions as in figure 4.6).
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Figure 4.8: Spontaneous radiation spectrum obtained by simulation for the plasma
wave undulator. v, = 4, a,, = 1%, and ¢ = = /2.

agreement with the beam spreading results discussed in Chapter 3.

The narrow spikes in the frequency spectrum found analytically and by simula-
tion can be explained in analogy to a linear array of attennas phased so that the
radiation peaks along the array axis, also called the end-fire array [57.. The elec-
trons along the undulator radiate like antennas in line and their radiation adds in
phase along the direction of propagation. Since the length of the undulator is long
compared with the radiated wavelength, the summed radiation changes rapid as the
angle of observation is changed from the forward direction. The angular width of
the peaks can be estimated by setting equal to zero the argument of the sine term
in the numerator of the line shape term in equation 4.13 for the radiation from the

plasma undulator.

The peak of the frequency spectrum (f = 0 value of the fundamental) changes
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in accordance with the resonance relation,
wr = 2v%w, /(1 + a2) (4.33)

as 7y and a,, are varied. The peaks of the frequency spectra obtained from several
simulations are plotted along with the theoretical resonance relation in figures 4.9(a)
and 4.9(b) versus v and a,, respectively. In these figures the solid line gives the
theoretical values. The measured frequency values are given by X’s when the abso-
lute peak of the spectrum was used and by O’s when the frequency was measured
at half way up the high frequency slope of the spectral peak. The deviation of the

X’s in figure 4.9(a) is due to the widening of the spectral peaks as v increases.

4.5 Stimulated Radiation, Radiation Gain and
Electron Bunching

Approximate equations for the radiation gain are obtained by summing the fields
of an injected plane electromagnetic (EM) wave with the plasma wave field, solving
the equation of motion by perturbation to obtain the velocity, relating the average
energy change of the electron to its average change in velocity along the undulator,
and relating the change in radiation energy to the electron energy change.

The radiation and plasma wave electric fields are oriented along the same direc-

tion so that the total fields are
E = (E, cos (kpy — wpt) + Er cos (knz — wyt + ¢,)) 0 (4.34)
B = E, cos(k,z — wet + ) & (4.35)
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where the EM radiation has field strength E,, frequency w,, wave vector k, and
phase ¢. and B is the magnetic field of the EM radiation. In this low gain approx-
imation E, is approximately constant. The frequency of the injected EM radiation
field is related to the frequency of the plasma wave undulator by the resonance
condition, equation 4.33. An electron that is injected with energy v is at resonance
with the radiation and does not lose or gain energy. To get radiation gain, the
electrons are injected with energy slightly greater than the resonance energy and
the decrease of the average electron beam energy as it travels down the undulator
results in a gain of radiation energy.

To solve the equation of motion it is separated into transverse and longitudinal
components and solved for the perpendicular and parallel velocity components,
df3, /dt and dgy /dt, which are function of the longitudinal position, z. The position,

or phase, of the electron within a radiation wavelength is defined as

C(t) = ¢+ Awt + kdz(t), (4.36)

where (, is the initial phase, Aw is the detuning factor and dz is the relative position
of the electron in the wave. The detuning factor describes the amount that the

electron’s initial energy is different from the resonant energy and is

Aw = Py — w1 - B,). (4.37)
Using
dgy _ 1 d¥(t)
T (4.38)

a pendulum equation is obtained which describes the motion of the electron relative
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to the wave

() _ Q2 J.( (t) + a2 w? sin (20 — 2w,t) (4.39)
—z =% o{a) cosa cos( Quyiy SiN (200 — 2wpt) .
where
o = B0 (4.40)
WyYo
and
2¢’EE
Q2 = o0 4.41
"This equation can be solved by perturbation to obtain the velocity, using
£ = 2 /Aw? (4.42)

as the small expansion parameter. From the change in velocity over the length of
the undulator we obtain the change in electron energy. The average final electron
energy, (v(t)), is found by averaging over the initial phase, ¢,. The negative of the

average change in electron energy gives the change in radiation energy, which is

Yo T wpAw?

N 2004
Yo (7(15)} ’YOQO JOQ(&) COS2OC (1 - COS Awt —_ %u_t sin Awt)

2
+ ag—‘”Jo(a) cos (200 — 2w,t). (4.43)

The gain, G(t), is obtained by multiplying the change in radiation energy by the
number of electrons, p.V, and dividing by the EM wave energy, 2E2p.V/87. Where

Pe is the electron density and V' is the volume that contains the electron beam and
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EM radiation[51}. The resulting gain for the plasma wave undulator is

8retElpec [ Ny, \° 1 5 . AwT |
G(r) = PR (ﬁo%mocg Ao {Jo(a) cos“a (1 — cos AwT — sin Awr)]
Ayt (£e)?
SR NE) (E’) Jo(a) cos (20 — 2w, 7) (4.44)

2 8
dag,w,

where we have used the following dimensionless variables in the time varying terms

Nudp

=1t 606 A’CD:&WN )\p .
Bsc

Nuhp' Boc

(4.45)

and w, = w,

We note that kyc = wy for the relativistic plasma wave and in general a,, is small
and vy is large. Then the arguments of the cosine and Bessel function terms are
small, thus these terms are approximately equal to one.

The pendulum and gain equations for the ac FEL undulator are obtained from
equations 4.39, 4.43, and 4.44 by setting k, = 0. The pendulum and gain equations
for the linearly polarized magnetic undulator of strength B, are obtained by setting
B, = E,, and ay, = k, = 0. The gain equations for the plasma wave and ac
FEL undulator have terms which depend on wpt and are due to the electrostatic
field. The electrostatic field term also depends on the square of the ratio of the
electrostatic to electromagnetic field magnitudes, and as the electromagnetic field
becomes larger the electrostatic term becomes less significant.

In figure 4.10{a) we plot the gain, equation 4.44, in units of

8re*E2pec/w,

(Nuwhp/Bovomoc?)” (4.46)

versus 7 for several values of dimensionless detuning (Aw from 1 to 5) for the

plasma wave undulator. At T = 0 the electron enters the undulator, and exits
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it at 7 = 1. For positive detuning values close to resonance (Aw small) there is
positive gain which increases as the electron travels down the undulator, as shown
in the figure. As the detuning increases, the gain reaches a maximuwm and begins
to drop near the end of the undulator. For detuning values far from resonance (i.e.
Az > 10} the gain will oscillate rapidly between positive and negative values as
the electron travels along the undulator. The case shown in figure 4.10{a) is for an
electron of 4, = 4 in an undulator of a,, = 0.1, and undulator-to-wave field ratio
E,/E, of 0.1. The gain plots for an ac FEL undulator and a linearly polarized
magnetic undulator also resemble figure 4.10(a). However for smaller values of a,,
or larger field ratios, the electrostatic term in the gain equation becomes significant
and the gain curves become as shown in figure 4.10(b} for the plasma wave and ac
FEL undulators. There is a rapid oscillation superimposed upon the gain curves
which is due to the electrostatic field term in the gain equation. By adjusting the
terms multiplying the electrostatic term of the gain equation, this oscillation can
be eliminated or increased. The physical reason we give for this oscillation is as
follows. As the electron oscillates, a component of its velocity is alternately parallel
and antiparallel to the electric field. The electric field can change the energy of the
electron by £ = e+ E. In the magnetic undulator, the magnetic field cannot change
the energy of the electrons and therefore the gain curves are smooth.

In figure 4.11 is plotted the gain and absorption versus detuning for four values
of time, which represent plasma wave undulators that are shorter or longer than
7 = 1. Positive gain occurs for small positive values of detuning, and negative gain
(or absorption) occurs for small negative values of detuning. For larger values of
detuning (either positive or negative) the gain is small and oscillates about zero.
The case shown in figure 4.11(a} is for an electron of 4, = 4 in an undulator of

a,, = 0.1, and undulator-to-wave field ratio of 0.1. The gain plots for an ac FEL
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Figure 4.10: Normalized stimulated radiation gain versus normalized time in the
plasma wave undulator for four values of detuning, Aw, for (a) E,/E, small and a,,
large and (b) E,/E, large, a, small and showing rapid gain oscillations.
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undulator and linearly polarized magnetic undulator also resemble figure 4.11{a).
The parameters of the plasma wave undulator can be chosen so that the electrostatic
term becomes significant, and this is shown in figure 4.11(b) for a,, = 0.01, field
ratio = 3.0 and -, = 4. Figure 4.11(b) shows that two of the curves oscillate about
a mean value greater than zero and two oscillate about a value less than zero. If
the field ratio were increased more, the separation between the two sets of curves
would also increase. The parameters for figure 4.11(b) approximately correspond
to those for figure 4.10(b) which has high frequency oscillations on the gain curves.
In the simulations a resonant EM wave was injected into the plasma wave co-
parallel with a finite micropulse containing several thousand electrons having the
same energy. YFigure 4.12(a) shows the spatial distribution of the electrons after
emerging from the plasma wave undulator, for the case when no EM wave is present.
The electron bunch is moving upward and the plasma wave is moving to the left in
the figure. In figure 4.12(b) the EM wave was has been added resulting in electron
bunching. The separation between the large bunches in figure 4.12(b) is equal to the
radiation wavelength, A.. There are closer spaced bunches within the larger electron
bunches with separation approximately equal to the higher harmonic wavelengths.
In the simulation, a smaller monoenergetic group of fifty test electrons was
injected along with an EM wave into the plasma wave undulator and allowed to drift
to the end of the undulator. The final energy of the electrons was recorded and then
averaged over the group of 50. In order to simulate injection at different detun_iﬂg
values each simulation run started with a different electron energy. In successive
simulation runs, the initial electron energy was swept in small increments over the
range from v, = 3.9 to 4.1. The EM wave frequency was resonant with the Yo = 4
electron in each simulation run. The negative of the average energy change of the

emerging electrons was plotted versus the initial energies in figure 4.13. This is the
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Figure 4.13: Radiation gain and absorption obtained by simulation versus electron
injection energy (v,), or detuning (Aw). This radiation curve results from combining
the radiation of 50 individual electrons.

gain/absorption curve obtained by simulation that was approximated by equation
4.44 and figure 4.11. Note that the baseline of the curve is shifted above the zero
gain level, and that the curve is not symmetric about the resonant energy, ~, = 4.
If several thousand electrons had been used in the simulation (very expensive), the
curve would probably have been much smoother. However, again we see that the
simulation is in qualitative agreement with the results of the approximate analytic

theory.

4.6 Summary

The relativistic plasma wave undulator has the potential to be a compact and

less expensive source of short wavelength radiation down to the x-ray regime be-
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cause it can be used with modest energy relativistic electron beams. Approximate
expressions for the electron trajectories, spontaneous radiation and stimulated ra-
diation gain have been obtained for the plasma wave undulator as well as the ac
FEL. The electron trajectory has a very small transverse drift in the plasma wave
undulator which causes the angular distribution of the spontaneous radiation to be
directed at a small angle away from the undulator centerline. The ac FEL does
not have this drift. The 3-D simulation results confirm the approximate analytical
trajectory, spontaneous radiation and stimulated radiation gain calculations. The
simulations also show that radiation gain occurs when an EM wave copropagates
with the electron beam, however a rapid modulation of the gain can also occur. Elec-
tron bunching occurs at the radiation wavelength and at harmonics when the EM
wave is copropagating with the beam. The stimulated radiation gain/absorption
curves resemble those of magnetic undulators, except that a shift in the gain curves
above or below zero gain can oceur.

Now that a correlation has been established between the numerical code and
the analytical calculation, we can venture to apply the code to more complex or
arbitrary field configurations. For example, laser scattering from plasma waves or
grating could be studied in detail. Another challenge would be to do the quantum

radiation calculation and simulation.
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Chapter 5

Studies of Electron Beam Matching and
Spot Size Compression in a

Ramped-Density Plasma Lens

5.1 Introduction

Plasma lenses have been proposed [58] and studied recently as a way to reduce
ete” beam spot sizes in future TeV linear colliders (TLC). Small spot sizes increase
the luminocity, £, at the collision point, and spot dimensions on the order of 1 nm
X 190 nm and smaller will be desired in the future [59] [60] {61]. The luminocity is

given by {61]
B N2bfHp N
- dro,oy -

L

@] (1032 em™? sec"l) (5.1)

where
N = number of particle per bunch
b = number of bunches per linac pulse
f = linac pulse repetition rate

Hp = luminocity enhancement factor due to disruption
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0. = bunch width in x direction

oy = bunch width in y direction .
Disruption is the additional pinching of one beam by the space charge of the other
beam with which it collides. In this study we examine in detail one way that has
been proposed for decreasing o, and o,.

Strong focusing fields will be required to obtain small spot sizes. Using thin
lenses of any kind, there is a fundamental limit (the Oide limit [62]) on the final
spot size due to the energy spread resulting from the synchrotron radiation emitted
during strong focusing. The adiabatic plasma lens has been proposed [63] as an
alternative to the thin lens since it would not be as severely restricted by the Oide
limit. In the adiabatic plasma lens beam electrons create an ion channel [64][65]
in the plasma which has a slowly increasing density. The ion space-charge field
provides an increasing focusing force that continuously, and adiabatically, squeezes
the beam to smaller spot sizes. Because there is a continuous focus rather than
a single focal point, chromatic aberrations are reduced. In studying the adiabatic
plasma lens, we have found that the increasing density ramp need not be adiabatic
in order to reduce chromatic aberrations, provided that the beam and lens are
matched.

Plasma lenses, sometimes called “space charge lenses”, have been used to focus
ion beams at least as early as 1947 (Garbor Lenses {66]) and had been suggested at
least as early as 1932 [67]. One kind of plasma lens uses the magnetic field of an
externally generated current in a z-pinch plasma to focus the particles, as is already
in use in the CERN Antiproton Collector (ACOL) [68] [69] [70] [71] [72]. Another
kind of plasma lens focuses by using the large transverse fields of relativistic plasma
waves as found in plasma wakefield and beatwave schemes [71] [73] [74] [75] [76] [77)

[78] [79]. Focusing of low energy electron beam (< 20 MeV) has been experimentally
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demonstrated in the wakefield plasma lens [80] [83]. Two regimes of plasma lens
operation have been studied: the overdense region in which the plasma density is
greater than the beam density and the underdense region in which the plasma den-
sity is less than the beam density [77] [82]. The underdense plasma lens is favored
over the overdense plasma lens because the latter has problems associated with non-
linear electron focusing resulting in aberrations and also large background collision
event rates in the high density plasma. Unfortunately, positron beams experience
nonlinear focusing in the underdense plasma lens, while the electrons have linear
focusing, which makes collisions asymmetric. Recent investigations have shifted
from wakefield type plasma lens schemes to schemes based on using a quiescent
plasma column through which the beams are passed and focused [77] [85]. Low
energy electron beam focusing has also been experimentally demonstrated in quies-
cent plasma lenses [86]. Recent refinements of the quiescent plasma lens scheme are
the adiabatic focuser [63] [87] [88] and the tapered plasma funnel [89] which both
rely on ramping the density of the quiescent plasma. The probem of experimentally
producing these ramped-density plasmas has yet to be solved, however research is
underway [88].

In this chapter we examine underdense ramped-density quiescent plasma lenses
by using a 2-D numerical model that calculates the trajectories of electrons injected
into a region of space that has an increasing focusing force. For the focusing force we
use the ion space-charge created in the beam channel by the beam as it propagates
into the plasma. However, the results of this study would pertain to any de;rice
that gives an increasing focusing force, not necessarily a plasma.

In the next section we describe the physical model of the underdense plasma lens,
summarize the basic theory in terms of the Courant-Snyder (Twiss) parameters [90],

and describe the 2-D numerical method. In the following sections the simulation
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results are presented on matching the beam to the lens and on the variation of beam
spot size due to variations in the beam and lens Courant-Snyder parameters, and

variation in beam energy.

5.2 Physical Model, Theory, and Numerical Method

5.2.1 Physical Model

In the adiabatic plasma lens concept a dense electron bunch passes through an
underdense plasma such that

Ne < Ty, (5.2)

where n, is the lens plasma electron density and n, is the electron beam density. The
leading electrons in the bunch repel all of the background plasma electrons. This
leaves a region containing relatively immobile and unshielded positively charged
ions with density

Ty = Mo, (53)

where n;, is the background ion density. The repulsive electrostatic forces of the
electrons in the beam are canceled by the attractive  x B forces, where # is the elec-
tron velocity and B is the magnetic field due to the beam current. The unshielded
ions of the background plasma produce a space-charge force, F,. From Gauss’ law

this force is
MegaGauss  ni,(cm™?)
cm 1017

'F,
M; = —27n,€? = 300 (5.4)

where y is the transverse displacement of the electron and e is the electron charge.
This is the force that focuses the electrons. We note that in magnetic lenses, the

focusing force is on the order of 10 kiloGauss /cm.
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5.2.2 The Lens

The equation of motion of a particle in the lens is

d*y(s)
ds?

+ K{s)y(s) =0 (5.5)

where K (s) is the focusing strength of the lens,

F, 1 2rnge? Wl
-~ Y — = 5.6
Kls) Y Ymee?  ymee?  2vc (56)
and m.; = n,. This has a solution
y(s) = ABi(8)'/? cos (¥ (s) + ¢) (5.7)

where A and ¢ are integration constants, ¥(s) is the phase advance, and G,(s) is
the amplitude function, also called the Courant-Snyder beta-function.

Equation 5.7 is an exact solution provided that

1(d8sY% 1 d2Bi(s) 2 (d¥(s)\?
(o = 1) ZHAO s AGP () 65)
and
constant
T(s) = G ds (5.9)

and we will let the constant equal one. In the originally proposed adiabatic lens

scheme [58] fG(s) varies linearly with s as follows

Bi(s) = Bo — 2c4(s)s (5.10)



with
B4(0) = B, (5.11)

where we define oy(s), another Courant-Snyder parameter, as the amount of lens

“adiabaticity” in the uniformly ramped plasma lens:

a(s) = oq(0) = oy = coﬁstant, (5.12)
and
afs) = -3 28 = L), (513

By uniformly ramped, we mean that the beta-function varies (decreases) at a con-
stant rate in the lens, or that o;(s) is a constant throughout the lens. (The nonuni-
formly ramped adiabatic lens will be discussed later.} For the uniformly ramped

adiabatic lens equation 5.8 becomes

Cl+of,  1+4ad
Bi(s): (B — 20408)°

K(s) (5.14)

We can find the value of f(s) at the entrance to the lens (s = 0) by combining

equations .14, 5.5, and 5.4 to get

mmmmxzwumaf- (5.15)

po

where we have used the initial background plasma electron density at the entrance

to the plasma lens given by

wp(0)? = w2, = . (5.16)
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Using the above expressions we have the important relationships:

1 1

K(s)a%mn(s)mm

(5.17)

for the unimformly ramped plasma lens.
We note that equation 5.7 is the approximate WKB solution to the equation of

motion, equation 5.5, for the condition

d 3(8) 1
g 2 1
s & 5 (5.18)
In that approximation we also get
1 1
= and W(s) = ds. 5.19
ﬂi (5) (5) ( } / 6! (S) ( }

The inequality in equation 5.18 is the condition that the plasma density ramp be

adiabatic.

5.2.3 The Beam

The coordinates of the beam as it propagates through the lens are related by

the beam ellipse equation {an exact constant of the motion)

[5(s)% + (cu(8)y(s) + Buls)y/ ()]
Bu{s)e

=1 (5.20)

where

y'(s) = d?;is), (5.21)
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the beam ellipse skewness factor is

on(s) = 3 ) _ i), (5.22)

Gs(s) is the beam betatron wavelength, and ¢ is the beam emittance. The beam

betatron wavelength is related to the oscillation wavelength, Ay, by

Ab

Bo(s8) = 5 (5.23)

Equation 5.20 also describes the boundary of the beam in phase space where ¢
is the area of the beam in phase space divided by =, and the normalized emittance
is

€n = 7YE. (5.24}

5.2.4 The Meaning of Matched and Unmatched Beam and

Lens

In the original adiabatic plasma lens scheme [58] the beam and lens were un-
matched, meaning that the waist of the beam coincided with the entrance to the
lens, as illustrated in figure 5.1(b). In our analysis of the plasma lens, we fix the
values of oy and 3 for the lens and will compare the two cases in which the beam
is matched and unmatched to the lens. The values of the electron beam’s «y and
By at the entrance to the lens are varied conceptually by shifting the position of the
beam along s axis. Figure 5.1(a) shows that for the matched beam and lens case

there is a continuous transition of the slope of the beam envelope as it enters the
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(a) Beam and Lens are Matched:

Om(0)

Opg = Cyp Om(S)
¢y o = constant
p bo & B fo
\Ufmin
(b) Beam and Lens are Unmatched:
Sum(0}
O(.b = 0

o, = constant

E‘bo # Bfo

V

Cf min

Figure 5.1: Geometry of beam and ramped density plasma lens showing the (a)
matched and (b) unmatched schemes.



lens from free space. For the matched beam and lens case we have

ap(0) = (0}, (5.25)
B0} = 5(0), (5.26)

and
B (0) = ~204(0). (5.27)

For the unmatched beam and lens case we have

a,(0) # (0}, (5.28)
65(0} = 5(0), (5.29)

and
3:(0) = 0. (5.30)

These definitions for the matched and unmatched cases will be extended in a later

section to include the lens nonuniformity factor.

5.2.5 Electron Trajectories and Spot Size Compression

The amplitude of the electron transverse displacement, betatron wavelength and

ion density at & position s in the lens are related to their initial quantities by

y(s) _ [B()] P eos¥(s) [ mo 14 1
y(0) { Bio :‘ cos ¥ (0) = {ni(s)} cos ¥{0) (5:31)
where we have used
cos¥(s) < 1. (5.32)
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We refer to the ratio y(s)/y(0) as the spot size compression or reduction, where y(0)
is the beam radius at the lens entrance and y(s) is the beam radius at the minimum
waist at the exit of the lens. To find cos ¥(0) we differentiate equation 5.7, then for

y'(0) = 0 we get,
1

v1+al .

Thus for particles initially parallel and on the boundary of the beam envelope

cos U(0) = (5.33)

(unmatched case), equation 5.31 becomes

y(s) _ [ o 1V =[] ;
4 0) < (s V1i+of = B vi+aof. (5.34)

For cos ¥(0) = 1, we find that

Qo

y!(O))x - N

(5.35)

which gives the slope of the beam envelope at the entrance to the lens for the
matched case (see figure 5.1(a)). Thus for particles initially on the boundary of the

matched beam envelope at s = 0, equation 5.31 becomes

1/4
uls) [ Mo ] . (5.36)

¥(0) = [ni(s)

Note that equation 5.31 is exact, independent of whether the density is ramped
adiabatically (4" <« 1/2) or not. This suggests that the lens need not be adiabatic
if the beam enters the plasma converging at the matching angle, 8,,. The matching

angle is
doy, oy dng
ds  4ng, ds

O, = (5.37)

which was obtained using equation 5.14, equation 5.13, the expression for the r.m.s.



beam radius

o2 = efi, (5.38)
and the definition of the plasma density scale length, L,, at the lens entrance:

_ldK_ 1dn,
C Kds  my, ds

Lt (5.39)

We note that equation 5.14 is a convenient choice for the form of the plasma
density profile, where K'(s) is proportional to n(s). In general, if the density profile
n(s) is specified, then equation 5.8 can be solved numerically for 8(s) and 5'(s).
Then the initial to final spot size ratio for the particles on the boundary of the beam

envelope for a matched beam and lens is, from equation 5.31,

yls) {ﬁl(s)ll/ g | (5.40)

¥(0) - Bio

Generally 5(s) is not simply proportional to n!/2(s) and must be solved for numer-
ically.

In figure 5.2 we show a theoretical envelope of the electron beam along with a
representative single electron trajectory in an adiabatic lens. The theory curve is
a plot of equation 5.34, and the trajactory is a plot of the numerical solution to
the equation of motion, equation 5.5, for K (s) given by equation 5.14. In figure 5.2
the focusing strength K(s) is increased by a factor of 10% i.e. until the following

condition is met
1 10000

(ﬁlo - 2al05)2 - 6120

(5.41)

Then the focusing strength is held constant so that we can display and measure
the trajectories which then have constant betatron wavelengths. The left side of

equation 5.41 will diverge at a particular value of s resulting in an infinitely small
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Figure 5.2: Electron trajectory and beam envelope in ramped density plasma lens.

minimum spot width. The condition 5.41 is used to limit the divergence, and by
adjusting this limit we could adjust the absolute minimum width of the trajectory
in figure 5.2. But in this study we are interested in understanding the variation
of the spot size compression as a function of beam and lens parameters and not
necessarily the absolute minimum spot width, and thus we tolerate the arbitrariness
of the absolute spot size shown in these trajectory graphs. In an actual plasma lens
the absolute minimum spot width would be determined by the ratio of the minimum
and maximum densities in the lens, the width of the beam at the entrance to the

lens and the Courant-Snyder parameters.

5.2.6 Numerical Method

In the simulations, the trajectories of several hundred electrons were calculated
by numerically solving the equation of motion, equation 5.5, using a Runge-Kutte

scheme. The initial transverse positions and velocities of the particles were described
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by the distribution

2 2
fly) = exp |2 (ag: ) J (5.42)

and were obtained using a bivariate normal random number generating subroutine.

The spot size compression was calculated in the simulations by taking the ratio
of the r.m.s. widths of the beam’s input trajectories to the final focused trajectories.
The input trajectories were all calculated at s = 0 since all electrons were injected
there. The final focused widths were calculated by first obaining the r.m.s. widths

of each trajectory and then averaging over all of the trajectories.

5.3 Spot Size Compression vs Uniform Ramping

In this section we examine the beam spot size compression in the plasma lens
as a function of the lens adiabaticity, oy, for the cases of matched and unmatched
beams. By varying o we change the rate at which the density and focusing force
increase in the lens.

A beam of particles converging in free space is shown in figure 5.3, where we
have plotted just a few particle trajectories. The figure shows that the beam has an
initial r.m.s. free space width equal to o¢(s) at s = 0, converges to a minimum free
space waist equal to oy, at s ~ 6, and then diverges. We assume that the beam
has been focused by some magnet system upstream and the problem is to further
reduce the width of this beam using a plasma lens. In this example the beam has
a(0) = /3, E, = 15 GeV and €, = 1 x 10~% m-rad. These parameters were taken
from Table I of reference [63] which gives design examples for an adiabaic lens placed
at the SLAC End Station, SLC and TLC.

Figure 5.4 shows several trajectories from the same beam which are injected

into a plasma lens having o;{0) = a,(0) = /3, which is the matched case. Again
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y(s), iransverse position of electron
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Figure 5.3: Electron trajectories in free space.
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Figure 5.4: Electron trajectories in a matched ramped density plasma lens.
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Figure 5.5: Electron trajectories in an unmatched ramped density plasma lens.

we assume that the beam has been prefocused and is converging when it enters
the plasma lens at s = 0. The focused width of the beam at s ~ 3 is given by
equation 5.36. The plasma lens clearly focuses the beam to a spot size smaller than
the free space waist. The theoretical curve for the envelope is also plotted (thick
line). As in figure 5.2, the focusing force is increased and then held constant in
accordance with equation 5.41.

Figure 5.5 shows the beam injected into the plasma lens which has a;(0) = /3,
but now the beam has ab(é) = 0, which is the unmatched case. We assume that the
beam has been prefocused but not as strongly as in the matched case, so that here
the beam is at a different free space waist, now located at s = 0, that is the same
width as the converging beam in the matched beam case at s = 0. The theéreticai
curve is also shown. Clearly the beam’s focused spot size is not as small as in the
matched plasma lens case.

The variation of beam spot size compression, Tmaz/Tmin 88 a function of oy(0)
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Figure 5.6: Spot size compression vs adiabiticity factor for matched and unmatched
beam and lens.

and of matching is shown in figure 5.6. For small values of a;, less than approx-
imately 0.5, the reduction due to unmatching is negligible. But for larger values
of a; up to at least 2.0, the matched beam compression remains constant and the
unmatched beam compression decreases. Note that for oy > 1 the adiabatic condi-
tion, equation 5.18, fails. Therefore we conclude that for matched beam and lens,
it is not necessary to limit the plasma lens by the adiabatic condition.

In figure 5.6 we h.a;ve also plotted the theoretical reduction factor for the un-
matched case, which follows the numerical data for the unmatched case. There is
an oscillation in the ummatched curve which we attribute to the phase advance
term, cos W(s), which appears in the solution to the equation of motion and in
equation 5.31.

We now compare the minimum spot size for the matched and unmatched cases

with the minimum free space waist. From beam optics theory [91] [92] the r.m.s.
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free space beam spot size, o¢(s}, at position s, is related to the minimum free space

waist, oy, located at sy, . by

oHs) =%, (1 + L%;J—J—) = cBy(s) (5.43)

where sj,... is the position of the minimum free space waist. The subscript “f”
refers to “free space” and the subsubscript “min” always refers to the “minimum”

width of the beam. The betatron wavelength is

_ 2
B1(8) = Bmin (1 + Lﬁ-—@s—fﬂ‘-l) : (5.44)

Differentiating equation 5.44,

B(8) = —2a(s) = zis—%f&“——l , | (5.45)

and substituting into equation 5.43 gives

o3(s) =03, (1 +a(s)). (5.46)

fmiu

For the matched beam and iens we rewrite equation 5.36 in the r.m.s. notation

n. 12
o2 (s)=a? LL E;)} (5.47)

where o,,,,,. (8) is the minimum spot width at s in the matched plasma lens and o,
is the spot width at the entrance to the lens at s = 0. The subscript “m” refers to
“matched”. Comparing our examples for the free space beam and matched beam
and lens we see that

o2 (s) = J?(s) (5.48)



at s = 0. We then find that the relationship between the free space waist and the

minimum spot width in the matched beam and plasma lens example is

1/2
2 2 2 Mio
= i1 . 5.49
where the minimum width of the matched beam occurs at s.
For the unmatched beam and lens we rewrite equation 5.34 as
n. 12
2 2 io 2
Tarnin (8) = O [ms)] (1+ad) . (5.50)

The subscript “um” refers to “unmatched”. Following the procedure above we find
that the relationship between the free space waist and the minimum spot width in

the unmatched beam and lens example is

1/2

n‘

O (8) = 05, (14 0,) [n(‘s’)} (1+0}) . (5.51)
1

If we place the entrance to the plasma lens at the free space waist shown in
figure 5.3 then this would be an unmatched cases, and the minimum waist obtained

in the lens in terms of the free space waist would be

1/2
Nio

where the subscript “umafw” refers to “unmatched at free space waist”.
According to our previous analysis the adiabatic condition should be applied to
the plasma lens in this special case.
In comparing the three configurations, equations 5.49, 5.51, and 5.52, we find

that the minimum spot size depends on the values of oy, and .
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5.4 Spot Size Compression vs Nonuniform Ramp-
ing
Thus far we have assumed that the plasma density ramps everywhere with the
same degree of adiabaticity (i.e, o;(s} = constant, equation 5.12). Next we consider
deviations from this assumption. We include the effect of nonuniform ramping in

ai{s) by setting
(8} = ay, (1 — &8) (5.53)

so that
Bi(s) = Bio — 20u(s)s = Bio — 2t (5 — 615%) (5.54)

where &; is the nonuniformity factor for the lens. Thus & > 0 (& < 0} corresponds
to a lens that is becoming more (less) adiabatic with distance into the lens. For

this case we find, using the same steps which lead to equation 5.8 for the uniform

case, that
1 2 .2 o
K(s) = + aj, o001 - constant } (5.55)
(Bio — 201108 + 201,6;8%) Bi(s)
and also following the steps which lead to equation 5.15 we get that
QY aye)’ ¢

Bo= |20 4 ( i ) & +2v(1+ad ) (5.56)

Wpo Lo Do

Notice that because the numerator in equation 5.55 is independent of s, we can
use equation 5.17 to show that for this nonuniform case the unmatched compression

is

y(s) _ [Bs)]"* cos ¥(s) ne 114 1
y(0) { Bio } cos U(0) = [m(s)] cos U(0) (5.57)

just as in equation 5.31 for the uniform case. For the matched nonuniform case we
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Figure 5.7: Spot size compression vs nonuniformity for three matching conditions.

get the compression

ERTA 1/2
% : {nn(s)} Vi+al = {ﬁgs)} 1+ af, (5.58)
and also
v(0)= -2 (5.59)

just as in equation 5.34 for the uniform case. The difference here is that we have
new expressions for K{s) and §;(s) and the matching conditions. The expressions
relating the minimum r.m.s. free space waist to the minimum spot widths 'm_i;he
matched and unmatched uniform lens, equations 5.49, 5.51, and 5.52, are exactly
the same for this nonuniform lens case.

Spot size compression versus the nonuniformity factor, &, is plotted in figure 5.7
for ay, = 1.5 and for the matched and unmatched cases. The upper curve in

figure 5.7 shows that spot size compression is constant for matched a and é;. By
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matched o and & we mean that

Qb == Qo (5.60)
and
Qy,7YC aive )’ | c
Bro = Bro = | ——2 51+J( fo ) BE+2v(1+a )| —. (5.61)
oo Wy Wpo

This means that we can change the focusing rapidly (6 < 0) and the spot size will

be unaffected as along as we can adjust the ay, and By, of the beam to match.
The next lower curve in figure 5.7 shows the case when a is matched but & is

not, which means that o, is given by equation 5.60, 3, is given by equation 5.56

and & is zero, or

B = 21 (1 + af) —. (5.62)

po
This curve shows that the compression eventually becomes reduced by almost the
factor 1/ sqrtl + of, as & gets more negative. This curve also shows that for some
small positive values of §,,, the compression for this case can become greater than
the completely matched case and even appears to oscillate. Again we attribute this
to the phase advance term that appears in the solution for the equation of motion.

The lowest curve is completely unmatched case, in which case qp, = 0 G, is

given by equation 5.56 and
— c
Wpo

This is the lowest compression case, but the curve shows that after § gets less than
approximately —2, the compression is independent of §. As 6§ becomes positive,
the change in the focusing in the lenses becomes very gradual and the unmatched
compression is improved. The decrease in the lower curve at large positive §; occurs

when the plasma density n, longer reaches its maximum final value of 10*n, (i.e.,
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Figure 5.8: Spot size compression vs electron energy and adiabaticity factor.

& > m/28,). The results are qualitatively the same for different values of ay,
between 0.0 and 2.0. The studies also show that positive & must be less than or

equal t0 aue.

5.5 Spot Size Compression vs Beam Energy Spread

The effect of beam energy spread is shown in figure 5.8, in which spot size
compression is plotted ver_sus the fractional reduction in beam energy and aj,. In
this simulation, all of the electrons in the beam were reduced in energy by the same
amount before injection into the plasma lens. The beam energy was varied from
100% to 70%. The figure shows that the compression remains constant for small
oy and increases only slightly for large g, as the energy is reduced. These curves
imply that electrons that lose energy will be focused to a spot size at least as small

as that of the highest energy particles. The aberrations due to energy spread should
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be very small in this scheme.

5.6 Summary

We have examined in detail the beam spot size compression in a ramped density
plasma lens using a 2-D code. We investigated cases in which the Courant-Snyder
G-function varied linearly with disfance in the lens (uniform a;), and also when
the variation deviated from linearity (nonuniform a,). The compression was found
to remain constant even when the density was not ramped adiabatically and when
the ramp deviated from linearity, provided that the beam and lens had matching
Courant-Snyder parameters. The expected compression ratios for several beam-
lens matching conditions were calculated, compared with free space focusing, and
found to differ primarily according to the beam and lens o factors. The beam
energy spread was found not to be a cause of chromatic aberrations in this lens, as
expected. The results apply not only to a ramped density plasma lens, but to any
ramped linear focusing force.

Future investigations should address nonlinearities in the focusing force. The
radiation emitted by the strongly focusing particles, in both the classical regime
(as done for the plasma wiggler in Chapter 4) and the quantum regime, could be
calculated. The numerical code can easily be extended to 3-D, as done in the
previous chapters. The code can be modified to model arbitrary focusing fields, as

well as model colliding beams of various shapes.
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Chapter 6

Conclusion

We began this study by examining two topics related to applications of large
amplitude relativistic plasma waves; the plasma wave accelerator and plasma wave
undulator. While in the process of studying the beam quality needed for coherent
emission of radiation in the plasma wave undulator, we found that the beam could
be used as a diagnostic of the plasma wave fields. Thus the topic of an electron beam
diagnostic developed into a major part of this work. The plasma lens, which does
not necessarily utilize a plasma wave, is an application of the large amplitude fields
found in plasmas, and thus was easily modeled by the theoretical and computational
tools developed for the previous studies.

For several years much theoretical and computational work has been done on the
plasma accelerator, plasma lens and plasma undulator. Experiments are underway
to test the plasma accelerator and plasma lens. Our motivation here was to support
experimental efforts by concentrating on developing more detailed and physically
illuminating descriptions of the beam-wave interactions than had been done by
previous theoretical and computational researchers. We also endeavored to use
actual experiments in progress as examples.

We have been able to describe the detailed evolution of the energy, spatial distri-

123



bution, and phase evolution of electrons accelerated in the plasma wave accelerator.
Comparisons were made of several ongoing or planned experiments. Estimates of
the number of electron accelerated into energy ranges were given for current beat
wave acceleration experiments.

We described how the scattering of a relativistic electron beam could be used
as a diagnostic of a relativistic plasma wave, and gave numerical limits on its use.
Details on the variation of the beam spot size as a function of several controllable
parameters were given. For higher energy beams, a grating phenomenon was found
in the electron distribution that could be used as a diagnostic too, but could also
have some other very interesting applications in the future.

The radiation emitted by electrons drifting in the plasma undulator was de-
scribed in detail. The plasma undulator was found to operate much like a traditional
magnetic undulator, and thus could be described using slightly modified versions
of well developed theories created for the magnetic undulator. A major experiment
to test the plasma undulator is not presently underway, however, if and when that
day comes, it is hoped that the results of this study will be of benefit.

Our studies of the ramped density plasma lens confirmed that small spot sizes
could be obtained in high energy colliders, however we found that when the beam
and lens are matched, the density ramp need not be adiabatic. We also found
expressions relating the minimum spot size in the lens to the minimum spot size
in free space for several beam injection configurations. Qur work did not include
self consistently the emission of radiation which will occur with strong focusing,
and would limit the spot size due to aberrations. A natural extension of this work
would be to include the radiation, both classical and quantum, self consistently.

A common idea connecting these topics is that plasmas can sustain much higher

electric and magnetic fields than can be sustained in vacuum. This permits minia-
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turization of devices and extends the Hmits of their performance to higher energies,
shorter wavelengths, smaller spots, and etc. The elusive plasma, however, is not
without ifs challenges. It will be interesting to see what other new plasma-filled,
rather that vacuum-filled, devices will break new ground in the future. Surely they
will benefit from detailed experiment oriented investigations such as the ones per-

formed herein.
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Appendix A

Tables for Plasma Wave Acceleration

Experiments

In this appendix are collected some tables that are relevant to laser plasma
beatwave acceleration experiments.
Table A.1is a list of lasers currently used in beatwave acceleration experiments.

Table A.2 is a comparison of beatwave accelerator properties.

9.6 ym 10.3 pm 10.6 um 1.05 pm 1.06 pm
A (cm) 0.0009552 | 0.0010274 { 0.0010590 | 0.0001053 | 0.0001064
k (cm™') | 6577.53 6115.44 5932.63 59669.38 | 59052.49
w (rad/s) | 1.97x10™ | 1.83x10™ | 1.78x10% | 1.79x10® | 1.77x10®
n, (cm™3) | 1.22x10% | 1.06x10% | 9.94x10'® | 1.01x10%" | 9.85x10%°
Table A.1: Lasers used in plasma beatwave acceleration experiments.
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9.6, 10.6 um { 9.6, 10.3 pm | 10.3, 10.6 pm | 1.05, 1.06 um
Ap (cm) 0.0097428 0.0135972 0.0343695 0.0101853
kp (cm™1) 644.9 462.09 182.81 616.88
wy (rad/s) 1.93x10%3 1.39x 10" 5.48 %1012 1.85% 1013
1, (em™?) 1.17x 1017 | 6.03x10% 9.44x 10" 1.07x 1017
Uphase 2.981x10% | 2.990x101° | 2.996x101° 2.997x 100
Bphase 0.99467 0.99735 0.99954 0.99995
Yrhase 9.70 13.73 32.95 96.23
Laceeteration (cm) | 0.58 1.63 93.75 60.04
Ymaz (€ =1) 376.3 754.4 4343.3 37038.7
Labs UCLA UCLA UCLA RAL

ILE EP

INRS

Table A.2: Properties of laser excited beatwaves used in PBWA experiments.
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Appendix B

Comments on the UCLA Beatwave

Acceleration Experiments

In this appendix we discuss three plasma sources used in the UCLA beatwave
experiments: the theta pinch, the multi-cathode arc, and the gas jet. Simulation
results of electron acceleration for each source are given. In the UCLA laser plasma
beatwave experiments two beams from a COj, laser are generated, shortened, ampli-
fied, and focused colinearly into a dense plasma. The plasma density is adjusted so
that the plasma frequency matches the difference frequency (beat frequency) of the
two lasers. The beating lasers resonantly excite a relativistic plasma wave. Elec-
trons are injected into the plasma concurrently with the lasers and are accelerated
by the plasma wave as described in Chapter 2. Figure B.1 shows the arrangement
of components in the beatwave experiments at UCLA. The three plasma sources
are sketched in figure B.2 and their properties are given in table B.1. A discussion
on these and several other plasma sources for producing large amplitude plasma
waves is given by Chen[93]. The original plasma source used was the theta pinch
{figure B.2(a) and table B.1 which is described in detail by Leemans[94]. Simulation

results of the number of electrons accelerated in the theta pinch that also would be
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Figure B.1: Sketch of beatwave acceleration experiment at UCLA.

Source Theta Pinch | Multi-Cathode Arc | Plasma Jet

wavelengths (um) | 9.6, 10.6 10.3, 10.6 9.6, 10.6

Rresonant (€M~=3) 58 % 101 | 8.0 x 101 1.0 x 107

Nmeasured (T °) 0% 107 | 105 <1077 107 at 1500 psi

1017 at 30 psi

plasma size 2.5 ¢cm dia. | 5 - 7 mm dia 1.5 mm dia.
20 cm long | 1 cm long 1.5 mm long

plasma wave length | 0.75 -3 mm | 2 - 4 mm 1.5 mm

€ = n1/ng 2-17% 5. % 10%

fill gas H, or He Ho H;

gas pressures 0.1-17T }05-3T 1.77T

pulsed B field 20 kG 400 G none

trapped B field 1-2kG none none

Power Source:

current 350 kA 2 kA or 25 kA n/a

charging voltage 28 kV 5 kVor3kV n/a

capacitance 11.1 uF 1.8 u¥F n/a

inductance 72 nH 0.4 uH n/a

stored energy 43 kJ 23Jor81] n/a

pulse period 6 ps 10 us n/a

Table B.1: Properties of plasma sources used in UCLA beatwave acceleration ex-

periments.
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detected by the original spectrometer are shown in figure 2.16 of Chapter 2. For
figure 2.16, 250,000 electrons having v, = 4 were injected into a beatwave having
vp = 14 and € = 2% to 17%, accelerated for 3.0 mm to 0.75 mm, and collected in a
half angle of 8 deg. The Chapter 2 results show that only 1’s to 10’s of electrons are
expected to be detected due to the large radial electric fields in the plasma wave,
marginal electron injection energy, and large beam emittance. A detailed experi-
mental study[96] showed that large amplitude plasma waves could be excited but
that the theta pinch plasma contained trapped magnetic fields (about 4 kGauss)
which could deflect electrons from the beam. These magnetic fields would further
reduce the electrons detected to below the numbers of figure 2.16, as shown in fig-
ure 2.20. Full beatwave acceleration experiments were performed but no electrons
were detected[8] Subsequently, improvements were made to the electron injector
and the theta pinch plasma was replaced with an arc plasma source.

A multi-cathode arc plasma source (figure B.2(b) and table B.1 was installed
and tested by injecting the electron beam through it. Beam trajectory calculations
showed that the large azimuthal magnetic field {about 400 Gauss) near the arc cur-
rent deflected the electrons as they approached the plasma. The electrons passed
through the plasma wave at an angle (about 12 deg) instead of parallel to it. This
reduced the interaction time between the electrons and wave. Additional simula-
tions were performed to obtain the energy spectrum of the accelerated electrons
and was based on using the original unimproved electron injector. The simulation
results are summarized in figure B.3 and show that the number of electrons aéceﬂ
erated and their energies decreased as the angle of injection was increased from 0
to 12 deg. For figure B.3, 250,000 electrons having <, = 4 were injected into a
beatwave having +, = 34 and e = 3%, accelerated for 2.0 mm, and collected in a

half angle of 8 deg. FExperiments were performed but it was difficult to control the
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Figure B.3: Histogram of electrons accelerated in the multi-cathode arc source for
(a) zero degree injection angle and (b) 12 degree injection angle.
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injection of electrons into the plasma at an angle. To overcome these difficulties a
gas jet plasma source was introduced.

The gas jet plasma source (figure B.2(c) and table B.1 does not contain a mag-
netic field to perturb the electrons. Simulations were performed for electron injec-
tion into three gas jet plasma waves of different ¢, and the results are shown in
figurec B.4(a), (b), and (c). For these figures 250,000 electrons having ~, = 5 were
injected into a beatwave having -, = 14 and ¢ = 10%, 3%, and 1%, accelerated
for 1.5 mm, and collected in a half angle of 6 deg. The histogram of accelerated
electron energies, the energy versus longitudinal and transverse positions, and the
phase space trajectory are shown in each figure. These summaries are based on
using the improved electron injector which was increased in energy from ~ = 4% to
5. The injector’s emittance was decreased from 20 mm-mrad to 3 mm-mrad so that
a smaller beam focus could be obtained at the laser focus resulting in better overlap
between the electron beam and plasma wave. The magnetic spectrometer was re-
designed to detect smaller increases in electron energy. A cloud chamber immersed
in a magnetic fleld was introduced as an alternate electron energy diagnostic. The
simulations show that the number of detectable electrons accelerated in the gas jet
plasma source will be on the order of thousands. Full electrén acceleration experi-
ments utilizing the gas jet plasma source remain to be performed.

We note that the tunneling ionization method was also investigated as a way to
obtain uniform high density plasma, as discussed in detail in reference [101]. The
plasma source in this case is just the gas filled vacuum chamber, and is not shown
or listed in figure B.2 or table B.1. The density obtained by tunneling ionization
was limited to below 1 to 2 x10% ¢cm™3. This limit was due to laser refraction
in a long plasma which prevented the laser from completely focusing and having

the required intensity for producing the desired ionization and density. The gas jet
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plasma source is short and thus laser refraction should not be a problem.



Appendix C

Electron Energy Data Acquisition

System

In this Appendix we discuss the electronic data acquisition system for measur-
ing and recording the accelerated electron energies. Magnetic spectrometers were
located at the output of the UCLA beatwave acceleration experiments to momen-
tum analyze the accelerated electrons. The spectrometers deflected electrons onto
a linear array of silicon surface barrier detectors. The array consisted of up to
eight detectors. Several spectrometers were available and their geometries and field
strengths could be readily varied to suit different experimental configurations. The
detectors could be substituted at the output of any of these spectrometers. A
schematic of the data acquisition system is shown in figure C.1. The system con-
sists of a spectrometer, detectors, preamps, differentiators, inverters, power splitter,
attenuators, eight- channel amplifier, sixteen channel analog-to-digital converter,
computer, and various power supplies.

A small number of accelerated electrons was predicted in the numerical simu-
lations discussed in Chapter 2, therefore the detectors needed to be very sensitive.

The system was designed to permit detection of single electrons incident on the
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detectors. The silicon surface barrier detector consists of a 1000 pm thick p-type
silicon wafer in contact with a 0.18 mm aluminum window. The wafer diameter
is about 10 mm which restricted the energy resolution to several hundred electron
volts for most of the spectrometer configurations used. An electron passing through
the silicon wafer loses a smali amount of enegry energy which goes into creating
electron-hole pairs. Biased electrodes collect the charges, which causes a voltage
pulse to appear at the output of the detectors. The rate of energy loss in sili-
con, dE/dx, is approximately constant for electrons in the range of 0.7 to 7.0 MeV
(v = 2.4 to 14) which includes the range of energies most of the spectrometers are
configured to detect. Therefore the expected magnitude of the output pulse would
be approximately constant for any electron in the energy range of interest. Also,
this feature would permit counting the number of electrons in an energy bin because
the magnitude of the detector output would be directly proportional to the number
of electrons incident at one time.

The voltage signal from one electron was determined by placing beta emitting
isotopes, Co® or Sr*, over the entrance to the detectors. The isotope emits a
spectrum of beta energies, however the highest energy electrons, which had range
greater than the thickness of the detectors, were used to obtain a calibration of
the system in units of volts/electron. The output of the detector was nominally a
3 mV positive step pulse ;vith 500 msec decay. The preamps were located at the
detectors and transmitted the pulse by coax cables to a screen room located about
10 m away. A differentiating filter shaped the pulse and a transformer converted its
polarity to suit the input requirements of the amplifier and ADC. The amplitude
and width of the pulse could be modified by changing the components in the filter,
but nominally it was a 10 mV pulse with 50 nsec width, an example of which is

shown in figure C.1. A power splitter was used to obtain three pulses, one of which
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was recorded on a storage oscilloscope in order to pro